Properties

Label 6.0.110716875.2
Degree $6$
Signature $[0, 3]$
Discriminant $-110716875$
Root discriminant $21.91$
Ramified primes $3, 5$
Class number $4$
Class group $[2, 2]$
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more

Show commands: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 6*x^4 + 23*x^3 - 39*x^2 - 48*x + 256)
 
gp: K = bnfinit(x^6 - 3*x^5 + 6*x^4 + 23*x^3 - 39*x^2 - 48*x + 256, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![256, -48, -39, 23, 6, -3, 1]);
 

\(x^{6} - 3 x^{5} + 6 x^{4} + 23 x^{3} - 39 x^{2} - 48 x + 256\)  Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(-110716875\)\(\medspace = -\,3^{11}\cdot 5^{4}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $21.91$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $3, 5$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Gal(K/\Q)|$:  $6$
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{4} + \frac{1}{6} a$, $\frac{1}{1008} a^{5} + \frac{5}{1008} a^{4} - \frac{61}{504} a^{3} - \frac{281}{1008} a^{2} - \frac{271}{1008} a - \frac{23}{63}$  Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $2$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -\frac{1}{336} a^{5} - \frac{5}{336} a^{4} + \frac{5}{168} a^{3} - \frac{55}{336} a^{2} - \frac{65}{336} a + \frac{16}{21} \) (order $6$)  Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( \frac{31}{168} a^{5} - \frac{125}{168} a^{4} - \frac{33}{28} a^{3} + \frac{697}{168} a^{2} + \frac{391}{168} a - \frac{123}{7} \),  \( \frac{5}{16} a^{5} - \frac{85}{48} a^{4} + \frac{149}{24} a^{3} - \frac{109}{16} a^{2} - \frac{241}{48} a + \frac{64}{3} \)  Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 93.9533122288 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{3}\cdot 93.9533122288 \cdot 4}{6\sqrt{110716875}}\approx 1.47656827028$

Galois group

$S_3$ (as 6T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 6
The 3 conjugacy class representatives for $S_3$
Character table for $S_3$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.6075.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 3.1.6075.2 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\)
Degree 3 sibling: 3.1.6075.2

Multiplicative Galois module structure

$U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A'$

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{3}$ R R ${\href{/padicField/7.1.0.1}{1} }^{6}$ ${\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.3.0.1}{3} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{3}$ ${\href{/padicField/29.2.0.1}{2} }^{3}$ ${\href{/padicField/31.1.0.1}{1} }^{6}$ ${\href{/padicField/37.3.0.1}{3} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.11.8$x^{6} + 12$$6$$1$$11$$S_3$$[5/2]_{2}$
$5$5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
*2 2.6075.3t2.b.a$2$ $ 3^{5} \cdot 5^{2}$ 6.0.110716875.2 $S_3$ (as 6T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.