Normalized defining polynomial
\( x^{6} - 3 x^{5} + 43 x^{4} - 75 x^{3} + 366 x^{2} - 518 x + 1258 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1078706288=-\,2^{4}\cdot 11^{3}\cdot 37^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{192964} a^{5} - \frac{5600}{48241} a^{4} - \frac{13557}{192964} a^{3} - \frac{44641}{96482} a^{2} - \frac{9153}{48241} a + \frac{47205}{96482}$
Class group and class number
$C_{48}$, which has order $48$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{126}{48241} a^{5} - \frac{603}{96482} a^{4} + \frac{8747}{96482} a^{3} - \frac{9379}{48241} a^{2} + \frac{18024}{48241} a - \frac{68108}{48241} \), \( \frac{461}{192964} a^{5} - \frac{1413}{96482} a^{4} + \frac{21553}{192964} a^{3} - \frac{28835}{96482} a^{2} + \frac{25675}{48241} a - \frac{43427}{96482} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6.64934608307 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{-407}) \), 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.3.148.1 $\times$ \(\Q(\sqrt{-11}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.0.29154224.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $37$ | 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.37.2t1.1c1 | $1$ | $ 37 $ | $x^{2} - x - 9$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.11.2t1.1c1 | $1$ | $ 11 $ | $x^{2} - x + 3$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.11_37.2t1.1c1 | $1$ | $ 11 \cdot 37 $ | $x^{2} - x + 102$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 2.2e2_37.3t2.1c1 | $2$ | $ 2^{2} \cdot 37 $ | $x^{3} - x^{2} - 3 x + 1$ | $S_3$ (as 3T2) | $1$ | $2$ |
| * | 2.2e2_11e2_37.6t3.5c1 | $2$ | $ 2^{2} \cdot 11^{2} \cdot 37 $ | $x^{6} - 3 x^{5} + 43 x^{4} - 75 x^{3} + 366 x^{2} - 518 x + 1258$ | $D_{6}$ (as 6T3) | $1$ | $-2$ |