Normalized defining polynomial
\( x^{6} - 3 x^{5} + 6 x^{4} + 1261011 x^{3} - 1891521 x^{2} - 1891530 x + 397542860100 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-101097431351147483307=-\,3^{7}\cdot 11^{4}\cdot 31^{4}\cdot 43^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2158.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 31, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{774} a^{4} + \frac{14}{129} a^{3} - \frac{64}{129} a^{2} + \frac{71}{258} a + \frac{12}{43}$, $\frac{1}{25641433140660} a^{5} + \frac{8757}{712262031685} a^{4} + \frac{33128414048}{2136786095055} a^{3} - \frac{198769958863}{8547144380220} a^{2} + \frac{38649816389}{712262031685} a + \frac{2101693}{6777961}$
Class group and class number
$C_{6}\times C_{6}\times C_{168}\times C_{168}$, which has order $1016064$ (assuming GRH)
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{596312398620} a^{5} - \frac{8757}{16564233295} a^{4} + \frac{17514}{16564233295} a^{3} - \frac{840677}{198770799540} a^{2} - \frac{5521349799}{16564233295} a + \frac{105085}{157627} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{18700127}{25641433140660} a^{5} - \frac{403654004}{6410358285165} a^{4} + \frac{3770641622}{712262031685} a^{3} + \frac{4059546426299}{8547144380220} a^{2} - \frac{87651478026826}{2136786095055} a + \frac{23373108349}{6777961} \), \( \frac{9034873}{12820716570330} a^{5} - \frac{393171872}{6410358285165} a^{4} - \frac{21823529812}{2136786095055} a^{3} + \frac{1963570608721}{4273572190110} a^{2} - \frac{77000699846068}{2136786095055} a - \frac{42903633333}{6777961} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 163.1021432859664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.5805096363.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | data not computed |
| Degree 3 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| $31$ | 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $43$ | 43.3.2.2 | $x^{3} + 387$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.2.2 | $x^{3} + 387$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |