# Properties

 Label 5.3.22448.1 Degree $5$ Signature $[3, 1]$ Discriminant $-22448$ Root discriminant $7.42$ Ramified primes $2, 23, 61$ Class number $1$ Class group trivial Galois group $S_5$ (as 5T5)

# Related objects

Show commands: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 2*x^3 + 2*x^2 - x - 1)

gp: K = bnfinit(x^5 - x^4 - 2*x^3 + 2*x^2 - x - 1, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -1, 2, -2, -1, 1]);

$$x^{5} - x^{4} - 2 x^{3} + 2 x^{2} - x - 1$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $5$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[3, 1]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$-22448$$$$\medspace = -\,2^{4}\cdot 23\cdot 61$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $7.42$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $2, 23, 61$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $3$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$-1$$ (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $$a^{4} - a^{3} - 2 a^{2} + 2 a - 1$$,  $$a^{4} - a^{3} - 2 a^{2} + a$$,  $$a^{4} - a^{3} - 2 a^{2} + 3 a - 2$$ sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$2.86477407146$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{3}\cdot(2\pi)^{1}\cdot 2.86477407146 \cdot 1}{2\sqrt{22448}}\approx 0.480553129832$

## Galois group

$S_5$ (as 5T5):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A non-solvable group of order 120 The 7 conjugacy class representatives for $S_5$ Character table for $S_5$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Sibling fields

 Degree 6 sibling: 6.0.44186845232.3 Degree 10 siblings: Deg 10, 10.4.706989523712.2 Degree 12 sibling: Deg 12 Degree 15 sibling: Deg 15 Degree 20 siblings: Deg 20, Deg 20, Deg 20 Degree 24 sibling: Deg 24 Degree 30 siblings: Deg 30, Deg 30, Deg 30 Degree 40 sibling: Deg 40

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type R ${\href{/padicField/3.5.0.1}{5} }$ ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.5.0.1}{5} }$ ${\href{/padicField/11.5.0.1}{5} }$ ${\href{/padicField/13.5.0.1}{5} }$ ${\href{/padicField/17.5.0.1}{5} }$ ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ R ${\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.5.0.1}{5} }$ ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }$ ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.4.1$x^{5} - 2$$5$$1$$4$$F_5$$[\ ]_{5}^{4} 23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2} 23.2.1.2x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
$61$$\Q_{61}$$x + 2$$1$$1$$0Trivial[\ ] 61.2.0.1x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$

## Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $$\Q$$ $C_1$ $1$ $1$
1.1403.2t1.a.a$1$ $23 \cdot 61$ $$\Q(\sqrt{-1403})$$ $C_2$ (as 2T1) $1$ $-1$
4.44186845232.10t12.b.a$4$ $2^{4} \cdot 23^{3} \cdot 61^{3}$ 5.3.22448.1 $S_5$ (as 5T5) $1$ $-2$
* 4.22448.5t5.b.a$4$ $2^{4} \cdot 23 \cdot 61$ 5.3.22448.1 $S_5$ (as 5T5) $1$ $2$
5.31494544.10t13.b.a$5$ $2^{4} \cdot 23^{2} \cdot 61^{2}$ 5.3.22448.1 $S_5$ (as 5T5) $1$ $1$
5.44186845232.6t14.b.a$5$ $2^{4} \cdot 23^{3} \cdot 61^{3}$ 5.3.22448.1 $S_5$ (as 5T5) $1$ $-1$
6.44186845232.20t30.b.a$6$ $2^{4} \cdot 23^{3} \cdot 61^{3}$ 5.3.22448.1 $S_5$ (as 5T5) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.