Properties

Label 5.1.7788252073536.4
Degree $5$
Signature $[1, 2]$
Discriminant $2^{6}\cdot 3^{2}\cdot 11^{4}\cdot 31^{4}$
Root discriminant $378.69$
Ramified primes $2, 3, 11, 31$
Class number $375$
Class group $[5, 75]$
Galois group $A_5$ (as 5T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![13232, 12928, 3028, -136, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 136*x^3 + 3028*x^2 + 12928*x + 13232)
 
gp: K = bnfinit(x^5 - x^4 - 136*x^3 + 3028*x^2 + 12928*x + 13232, 1)
 

Normalized defining polynomial

\( x^{5} - x^{4} - 136 x^{3} + 3028 x^{2} + 12928 x + 13232 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $5$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7788252073536=2^{6}\cdot 3^{2}\cdot 11^{4}\cdot 31^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $378.69$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{3824} a^{4} + \frac{13}{3824} a^{3} - \frac{455}{1912} a^{2} + \frac{201}{956} a - \frac{42}{239}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}\times C_{75}$, which has order $375$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{1912} a^{4} + \frac{13}{1912} a^{3} + \frac{23}{956} a^{2} + \frac{220}{239} a + \frac{394}{239} \),  \( \frac{2}{239} a^{4} + \frac{19089}{1912} a^{3} + \frac{315977}{1912} a^{2} + \frac{499967}{956} a + \frac{229381}{478} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 182.251510113 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_5$ (as 5T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 60
The 5 conjugacy class representatives for $A_5$
Character table for $A_5$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 6 sibling: data not computed
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 sibling: data not computed
Degree 30 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.5.0.1}{5} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }$ R ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }$ ${\href{/LocalNumberField/23.5.0.1}{5} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/37.5.0.1}{5} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.5.0.1}{5} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.5.4.2$x^{5} - 891$$5$$1$$4$$C_5$$[\ ]_{5}$
$31$31.5.4.4$x^{5} + 10633$$5$$1$$4$$C_5$$[\ ]_{5}$