Normalized defining polynomial
\( x^{5} - 2x^{4} + 2x^{3} - 2x^{2} + 3x - 1 \)
Invariants
Degree: | $5$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(7333\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(5.93\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(7333\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{7333}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{4}-a^{3}+a^{2}-a+2$, $a^{4}-2a^{3}+2a^{2}-2a+2$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 0.84949301581 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{1}\cdot(2\pi)^{2}\cdot 0.84949301581 \cdot 1}{2\cdot\sqrt{7333}}\approx 0.391632483652$
Galois group
A non-solvable group of order 120 |
The 7 conjugacy class representatives for $S_5$ |
Character table for $S_5$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 6 sibling: | 6.2.394316595037.1 |
Degree 10 siblings: | deg 10, 10.2.394316595037.1 |
Degree 12 sibling: | deg 12 |
Degree 15 sibling: | deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 24 sibling: | deg 24 |
Degree 30 siblings: | deg 30, deg 30, deg 30 |
Degree 40 sibling: | deg 40 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.2.0.1}{2} }$ | ${\href{/padicField/3.5.0.1}{5} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.5.0.1}{5} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.5.0.1}{5} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7333\)
| $\Q_{7333}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.7333.2t1.a.a | $1$ | $ 7333 $ | \(\Q(\sqrt{7333}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
4.394316595037.10t12.a.a | $4$ | $ 7333^{3}$ | 5.1.7333.1 | $S_5$ (as 5T5) | $1$ | $0$ | |
* | 4.7333.5t5.a.a | $4$ | $ 7333 $ | 5.1.7333.1 | $S_5$ (as 5T5) | $1$ | $0$ |
5.53772889.10t13.a.a | $5$ | $ 7333^{2}$ | 5.1.7333.1 | $S_5$ (as 5T5) | $1$ | $1$ | |
5.394316595037.6t14.a.a | $5$ | $ 7333^{3}$ | 5.1.7333.1 | $S_5$ (as 5T5) | $1$ | $1$ | |
6.394316595037.20t30.a.a | $6$ | $ 7333^{3}$ | 5.1.7333.1 | $S_5$ (as 5T5) | $1$ | $-2$ |