Properties

Label 5.1.10673289.1
Degree $5$
Signature $[1, 2]$
Discriminant $3^{6}\cdot 11^{4}$
Root discriminant $25.45$
Ramified primes $3, 11$
Class number $5$
Class group $[5]$
Galois group $A_5$ (as 5T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-32, 4, 13, -5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 - 5*x^3 + 13*x^2 + 4*x - 32)
 
gp: K = bnfinit(x^5 - 2*x^4 - 5*x^3 + 13*x^2 + 4*x - 32, 1)
 

Normalized defining polynomial

\( x^{5} - 2 x^{4} - 5 x^{3} + 13 x^{2} + 4 x - 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $5$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10673289=3^{6}\cdot 11^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
$|\Aut(K/\Q)|$:  $1$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}$, which has order $5$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{2} a^{4} - a^{3} - \frac{1}{2} a^{2} + \frac{9}{2} a - 3 \),  \( 2 a^{4} - 9 a^{3} + 11 a^{2} + 6 a - 21 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 45.812239359 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_5$ (as 5T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 60
The 5 conjugacy class representatives for $A_5$
Character table for $A_5$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 6 sibling: 6.2.864536409.2
Degree 10 sibling: 10.2.9227446944279201.2
Degree 12 sibling: Deg 12
Degree 15 sibling: Deg 15
Degree 20 sibling: Deg 20
Degree 30 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/5.5.0.1}{5} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.5.0.1}{5} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.5.3$x^{3} + 12$$3$$1$$5$$S_3$$[5/2]_{2}$
$11$11.5.4.3$x^{5} + 33$$5$$1$$4$$C_5$$[\ ]_{5}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
3.3e6_11e2.12t33.1c1$3$ $ 3^{6} \cdot 11^{2}$ $x^{5} - 2 x^{4} - 5 x^{3} + 13 x^{2} + 4 x - 32$ $A_5$ (as 5T4) $1$ $-1$
3.3e6_11e2.12t33.1c2$3$ $ 3^{6} \cdot 11^{2}$ $x^{5} - 2 x^{4} - 5 x^{3} + 13 x^{2} + 4 x - 32$ $A_5$ (as 5T4) $1$ $-1$
* 4.3e6_11e4.5t4.1c1$4$ $ 3^{6} \cdot 11^{4}$ $x^{5} - 2 x^{4} - 5 x^{3} + 13 x^{2} + 4 x - 32$ $A_5$ (as 5T4) $1$ $0$
5.3e10_11e4.6t12.1c1$5$ $ 3^{10} \cdot 11^{4}$ $x^{5} - 2 x^{4} - 5 x^{3} + 13 x^{2} + 4 x - 32$ $A_5$ (as 5T4) $1$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.