Normalized defining polynomial
\( x^{47} + 2 x - 4 \)
Invariants
Degree: | $47$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 23]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-48\!\cdots\!384\)\(\medspace = -\,2^{90}\cdot 7\cdot 11\cdot 1983262109989\cdot 9629954559409\cdot 2636964269234910998030296751447753427112136904478433\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $177.23$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 7, 11, 1983262109989, 9629954559409, 2636964269234910998030296751447753427112136904478433$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$, $\frac{1}{2} a^{46}$
Class group and class number
not computed
Unit group
Rank: | $23$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{47}$ (as 47T6):
A non-solvable group of order 258623241511168180642964355153611979969197632389120000000000 |
The 124754 conjugacy class representatives for $S_{47}$ are not computed |
Character table for $S_{47}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $22{,}\,16{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $26{,}\,19{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | $35{,}\,{\href{/LocalNumberField/13.12.0.1}{12} }$ | $41{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $28{,}\,{\href{/LocalNumberField/19.11.0.1}{11} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $19{,}\,16{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $25{,}\,17{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | $25{,}\,{\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | $37{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $17{,}\,{\href{/LocalNumberField/41.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | $18{,}\,16{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $46{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $37{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $29{,}\,15{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
7.10.0.1 | $x^{10} + 5 x^{2} - x + 5$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
7.10.0.1 | $x^{10} + 5 x^{2} - x + 5$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
11 | Data not computed | ||||||
1983262109989 | Data not computed | ||||||
9629954559409 | Data not computed | ||||||
2636964269234910998030296751447753427112136904478433 | Data not computed |