Properties

Label 46.46.366...169.1
Degree $46$
Signature $[46, 0]$
Discriminant $3.666\times 10^{106}$
Root discriminant \(207.31\)
Ramified primes $23,47$
Class number not computed
Class group not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 - 281*x^44 + 281*x^43 + 36943*x^42 - 36943*x^41 - 3018809*x^40 + 3018809*x^39 + 171798631*x^38 - 171798631*x^37 - 7230471257*x^36 + 7230471257*x^35 + 233253028519*x^34 - 233253028519*x^33 - 5899076215769*x^32 + 5899076215769*x^31 + 118634379206695*x^30 - 118634379206695*x^29 - 1913227261896665*x^28 + 1913227261896665*x^27 + 24841448185280551*x^26 - 24841448185280551*x^25 - 259731008843786201*x^24 + 259731008843786201*x^23 + 2179461479976785959*x^22 - 2179461479976785959*x^21 - 14574810909297551321*x^20 + 14574810909297551321*x^19 + 76812129395835197479*x^18 - 76812129395835197479*x^17 - 313867040408607303641*x^16 + 313867040408607303641*x^15 + 971593453786655119399*x^14 - 971593453786655119399*x^13 - 2204250120107522631641*x^12 + 2204250120107522631641*x^11 + 3490365943426865059879*x^10 - 3490365943426865059879*x^9 - 3574383308326322677721*x^8 + 3574383308326322677721*x^7 + 2077416093076227512359*x^6 - 2077416093076227512359*x^5 - 531106707571103344601*x^4 + 531106707571103344601*x^3 + 38025539842859751463*x^2 - 38025539842859751463*x + 908219359340419111)
 
gp: K = bnfinit(y^46 - y^45 - 281*y^44 + 281*y^43 + 36943*y^42 - 36943*y^41 - 3018809*y^40 + 3018809*y^39 + 171798631*y^38 - 171798631*y^37 - 7230471257*y^36 + 7230471257*y^35 + 233253028519*y^34 - 233253028519*y^33 - 5899076215769*y^32 + 5899076215769*y^31 + 118634379206695*y^30 - 118634379206695*y^29 - 1913227261896665*y^28 + 1913227261896665*y^27 + 24841448185280551*y^26 - 24841448185280551*y^25 - 259731008843786201*y^24 + 259731008843786201*y^23 + 2179461479976785959*y^22 - 2179461479976785959*y^21 - 14574810909297551321*y^20 + 14574810909297551321*y^19 + 76812129395835197479*y^18 - 76812129395835197479*y^17 - 313867040408607303641*y^16 + 313867040408607303641*y^15 + 971593453786655119399*y^14 - 971593453786655119399*y^13 - 2204250120107522631641*y^12 + 2204250120107522631641*y^11 + 3490365943426865059879*y^10 - 3490365943426865059879*y^9 - 3574383308326322677721*y^8 + 3574383308326322677721*y^7 + 2077416093076227512359*y^6 - 2077416093076227512359*y^5 - 531106707571103344601*y^4 + 531106707571103344601*y^3 + 38025539842859751463*y^2 - 38025539842859751463*y + 908219359340419111, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - x^45 - 281*x^44 + 281*x^43 + 36943*x^42 - 36943*x^41 - 3018809*x^40 + 3018809*x^39 + 171798631*x^38 - 171798631*x^37 - 7230471257*x^36 + 7230471257*x^35 + 233253028519*x^34 - 233253028519*x^33 - 5899076215769*x^32 + 5899076215769*x^31 + 118634379206695*x^30 - 118634379206695*x^29 - 1913227261896665*x^28 + 1913227261896665*x^27 + 24841448185280551*x^26 - 24841448185280551*x^25 - 259731008843786201*x^24 + 259731008843786201*x^23 + 2179461479976785959*x^22 - 2179461479976785959*x^21 - 14574810909297551321*x^20 + 14574810909297551321*x^19 + 76812129395835197479*x^18 - 76812129395835197479*x^17 - 313867040408607303641*x^16 + 313867040408607303641*x^15 + 971593453786655119399*x^14 - 971593453786655119399*x^13 - 2204250120107522631641*x^12 + 2204250120107522631641*x^11 + 3490365943426865059879*x^10 - 3490365943426865059879*x^9 - 3574383308326322677721*x^8 + 3574383308326322677721*x^7 + 2077416093076227512359*x^6 - 2077416093076227512359*x^5 - 531106707571103344601*x^4 + 531106707571103344601*x^3 + 38025539842859751463*x^2 - 38025539842859751463*x + 908219359340419111);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - x^45 - 281*x^44 + 281*x^43 + 36943*x^42 - 36943*x^41 - 3018809*x^40 + 3018809*x^39 + 171798631*x^38 - 171798631*x^37 - 7230471257*x^36 + 7230471257*x^35 + 233253028519*x^34 - 233253028519*x^33 - 5899076215769*x^32 + 5899076215769*x^31 + 118634379206695*x^30 - 118634379206695*x^29 - 1913227261896665*x^28 + 1913227261896665*x^27 + 24841448185280551*x^26 - 24841448185280551*x^25 - 259731008843786201*x^24 + 259731008843786201*x^23 + 2179461479976785959*x^22 - 2179461479976785959*x^21 - 14574810909297551321*x^20 + 14574810909297551321*x^19 + 76812129395835197479*x^18 - 76812129395835197479*x^17 - 313867040408607303641*x^16 + 313867040408607303641*x^15 + 971593453786655119399*x^14 - 971593453786655119399*x^13 - 2204250120107522631641*x^12 + 2204250120107522631641*x^11 + 3490365943426865059879*x^10 - 3490365943426865059879*x^9 - 3574383308326322677721*x^8 + 3574383308326322677721*x^7 + 2077416093076227512359*x^6 - 2077416093076227512359*x^5 - 531106707571103344601*x^4 + 531106707571103344601*x^3 + 38025539842859751463*x^2 - 38025539842859751463*x + 908219359340419111)
 

\( x^{46} - x^{45} - 281 x^{44} + 281 x^{43} + 36943 x^{42} - 36943 x^{41} - 3018809 x^{40} + \cdots + 90\!\cdots\!11 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $46$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[46, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(366\!\cdots\!169\) \(\medspace = 23^{23}\cdot 47^{45}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(207.31\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $23^{1/2}47^{45/46}\approx 207.30597640546026$
Ramified primes:   \(23\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1081}) \)
$\card{ \Gal(K/\Q) }$:  $46$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1081=23\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{1081}(1,·)$, $\chi_{1081}(645,·)$, $\chi_{1081}(392,·)$, $\chi_{1081}(137,·)$, $\chi_{1081}(1036,·)$, $\chi_{1081}(781,·)$, $\chi_{1081}(528,·)$, $\chi_{1081}(275,·)$, $\chi_{1081}(277,·)$, $\chi_{1081}(22,·)$, $\chi_{1081}(919,·)$, $\chi_{1081}(24,·)$, $\chi_{1081}(921,·)$, $\chi_{1081}(160,·)$, $\chi_{1081}(1057,·)$, $\chi_{1081}(162,·)$, $\chi_{1081}(1059,·)$, $\chi_{1081}(804,·)$, $\chi_{1081}(806,·)$, $\chi_{1081}(553,·)$, $\chi_{1081}(300,·)$, $\chi_{1081}(45,·)$, $\chi_{1081}(944,·)$, $\chi_{1081}(689,·)$, $\chi_{1081}(436,·)$, $\chi_{1081}(1080,·)$, $\chi_{1081}(574,·)$, $\chi_{1081}(576,·)$, $\chi_{1081}(321,·)$, $\chi_{1081}(967,·)$, $\chi_{1081}(714,·)$, $\chi_{1081}(852,·)$, $\chi_{1081}(597,·)$, $\chi_{1081}(344,·)$, $\chi_{1081}(346,·)$, $\chi_{1081}(91,·)$, $\chi_{1081}(990,·)$, $\chi_{1081}(735,·)$, $\chi_{1081}(737,·)$, $\chi_{1081}(484,·)$, $\chi_{1081}(229,·)$, $\chi_{1081}(367,·)$, $\chi_{1081}(114,·)$, $\chi_{1081}(760,·)$, $\chi_{1081}(505,·)$, $\chi_{1081}(507,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{78\!\cdots\!99}a^{24}+\frac{24\!\cdots\!41}{78\!\cdots\!99}a^{23}-\frac{144}{78\!\cdots\!99}a^{22}-\frac{28\!\cdots\!00}{78\!\cdots\!99}a^{21}+\frac{9072}{78\!\cdots\!99}a^{20}-\frac{45\!\cdots\!78}{78\!\cdots\!99}a^{19}-\frac{328320}{78\!\cdots\!99}a^{18}-\frac{33\!\cdots\!50}{78\!\cdots\!99}a^{17}+\frac{7534944}{78\!\cdots\!99}a^{16}-\frac{36\!\cdots\!85}{78\!\cdots\!99}a^{15}-\frac{114213888}{78\!\cdots\!99}a^{14}+\frac{37\!\cdots\!96}{78\!\cdots\!99}a^{13}+\frac{1154829312}{78\!\cdots\!99}a^{12}+\frac{97\!\cdots\!44}{78\!\cdots\!99}a^{11}-\frac{7685922816}{78\!\cdots\!99}a^{10}+\frac{98\!\cdots\!47}{78\!\cdots\!99}a^{9}+\frac{32424986880}{78\!\cdots\!99}a^{8}+\frac{27\!\cdots\!50}{78\!\cdots\!99}a^{7}-\frac{80702189568}{78\!\cdots\!99}a^{6}+\frac{23\!\cdots\!99}{78\!\cdots\!99}a^{5}+\frac{103759958016}{78\!\cdots\!99}a^{4}-\frac{97\!\cdots\!30}{78\!\cdots\!99}a^{3}-\frac{52242776064}{78\!\cdots\!99}a^{2}-\frac{18\!\cdots\!37}{78\!\cdots\!99}a+\frac{4353564672}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{25}-\frac{150}{78\!\cdots\!99}a^{23}-\frac{12\!\cdots\!52}{78\!\cdots\!99}a^{22}+\frac{9900}{78\!\cdots\!99}a^{21}-\frac{11\!\cdots\!15}{78\!\cdots\!99}a^{20}-\frac{378000}{78\!\cdots\!99}a^{19}+\frac{88\!\cdots\!63}{78\!\cdots\!99}a^{18}+\frac{9234000}{78\!\cdots\!99}a^{17}-\frac{23\!\cdots\!01}{78\!\cdots\!99}a^{16}-\frac{150698880}{78\!\cdots\!99}a^{15}+\frac{38\!\cdots\!26}{78\!\cdots\!99}a^{14}+\frac{1665619200}{78\!\cdots\!99}a^{13}-\frac{28\!\cdots\!99}{78\!\cdots\!99}a^{12}-\frac{12373171200}{78\!\cdots\!99}a^{11}-\frac{19\!\cdots\!80}{78\!\cdots\!99}a^{10}+\frac{60046272000}{78\!\cdots\!99}a^{9}-\frac{22\!\cdots\!87}{78\!\cdots\!99}a^{8}-\frac{180138816000}{78\!\cdots\!99}a^{7}-\frac{10\!\cdots\!38}{78\!\cdots\!99}a^{6}+\frac{302633210880}{78\!\cdots\!99}a^{5}+\frac{33\!\cdots\!89}{78\!\cdots\!99}a^{4}-\frac{235818086400}{78\!\cdots\!99}a^{3}+\frac{26\!\cdots\!26}{78\!\cdots\!99}a^{2}+\frac{54419558400}{78\!\cdots\!99}a-\frac{23\!\cdots\!80}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{26}-\frac{84\!\cdots\!56}{78\!\cdots\!99}a^{23}-\frac{11700}{78\!\cdots\!99}a^{22}+\frac{12\!\cdots\!30}{78\!\cdots\!99}a^{21}+\frac{982800}{78\!\cdots\!99}a^{20}+\frac{37\!\cdots\!54}{78\!\cdots\!99}a^{19}-\frac{40014000}{78\!\cdots\!99}a^{18}-\frac{68\!\cdots\!66}{78\!\cdots\!99}a^{17}+\frac{979542720}{78\!\cdots\!99}a^{16}-\frac{24\!\cdots\!93}{78\!\cdots\!99}a^{15}-\frac{15466464000}{78\!\cdots\!99}a^{14}-\frac{24\!\cdots\!28}{78\!\cdots\!99}a^{13}+\frac{160851225600}{78\!\cdots\!99}a^{12}+\frac{29\!\cdots\!38}{78\!\cdots\!99}a^{11}-\frac{1092842150400}{78\!\cdots\!99}a^{10}+\frac{38\!\cdots\!81}{78\!\cdots\!99}a^{9}+\frac{4683609216000}{78\!\cdots\!99}a^{8}+\frac{19\!\cdots\!14}{78\!\cdots\!99}a^{7}-\frac{11802695224320}{78\!\cdots\!99}a^{6}-\frac{25\!\cdots\!15}{78\!\cdots\!99}a^{5}+\frac{15328175616000}{78\!\cdots\!99}a^{4}-\frac{27\!\cdots\!92}{78\!\cdots\!99}a^{3}-\frac{7781996851200}{78\!\cdots\!99}a^{2}-\frac{86\!\cdots\!66}{78\!\cdots\!99}a+\frac{653034700800}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{27}-\frac{12636}{78\!\cdots\!99}a^{23}+\frac{31\!\cdots\!50}{78\!\cdots\!99}a^{22}+\frac{1111968}{78\!\cdots\!99}a^{21}+\frac{20\!\cdots\!69}{78\!\cdots\!99}a^{20}-\frac{47764080}{78\!\cdots\!99}a^{19}-\frac{14\!\cdots\!53}{78\!\cdots\!99}a^{18}+\frac{1244595456}{78\!\cdots\!99}a^{17}-\frac{28\!\cdots\!64}{78\!\cdots\!99}a^{16}-\frac{21158122752}{78\!\cdots\!99}a^{15}+\frac{38\!\cdots\!85}{78\!\cdots\!99}a^{14}+\frac{240534448128}{78\!\cdots\!99}a^{13}+\frac{20\!\cdots\!54}{78\!\cdots\!99}a^{12}-\frac{1824052898304}{78\!\cdots\!99}a^{11}+\frac{81\!\cdots\!11}{78\!\cdots\!99}a^{10}+\frac{8992529694720}{78\!\cdots\!99}a^{9}+\frac{35\!\cdots\!42}{78\!\cdots\!99}a^{8}-\frac{27314808947712}{78\!\cdots\!99}a^{7}-\frac{32\!\cdots\!54}{78\!\cdots\!99}a^{6}+\frac{46352403062784}{78\!\cdots\!99}a^{5}-\frac{67\!\cdots\!42}{78\!\cdots\!99}a^{4}-\frac{36419745263616}{78\!\cdots\!99}a^{3}-\frac{28\!\cdots\!47}{78\!\cdots\!99}a^{2}+\frac{8463329722368}{78\!\cdots\!99}a+\frac{34\!\cdots\!73}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{28}-\frac{29\!\cdots\!94}{78\!\cdots\!99}a^{23}-\frac{707616}{78\!\cdots\!99}a^{22}+\frac{13\!\cdots\!48}{78\!\cdots\!99}a^{21}+\frac{66869712}{78\!\cdots\!99}a^{20}-\frac{27\!\cdots\!88}{78\!\cdots\!99}a^{19}-\frac{2904056064}{78\!\cdots\!99}a^{18}+\frac{13\!\cdots\!78}{78\!\cdots\!99}a^{17}+\frac{74053429632}{78\!\cdots\!99}a^{16}-\frac{33\!\cdots\!17}{78\!\cdots\!99}a^{15}-\frac{1202672240640}{78\!\cdots\!99}a^{14}+\frac{18\!\cdots\!95}{78\!\cdots\!99}a^{13}+\frac{12768370288128}{78\!\cdots\!99}a^{12}-\frac{35\!\cdots\!35}{78\!\cdots\!99}a^{11}-\frac{88126791008256}{78\!\cdots\!99}a^{10}-\frac{13\!\cdots\!83}{78\!\cdots\!99}a^{9}+\frac{382407325267968}{78\!\cdots\!99}a^{8}-\frac{11\!\cdots\!42}{78\!\cdots\!99}a^{7}-\frac{973400464318464}{78\!\cdots\!99}a^{6}+\frac{28\!\cdots\!33}{78\!\cdots\!99}a^{5}+\frac{12\!\cdots\!60}{78\!\cdots\!99}a^{4}+\frac{29\!\cdots\!98}{78\!\cdots\!99}a^{3}-\frac{651676388622336}{78\!\cdots\!99}a^{2}-\frac{31\!\cdots\!75}{78\!\cdots\!99}a+\frac{55011643195392}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{29}-\frac{789264}{78\!\cdots\!99}a^{23}+\frac{38\!\cdots\!58}{78\!\cdots\!99}a^{22}+\frac{78137136}{78\!\cdots\!99}a^{21}+\frac{28\!\cdots\!62}{78\!\cdots\!99}a^{20}-\frac{3580101504}{78\!\cdots\!99}a^{19}+\frac{40\!\cdots\!88}{78\!\cdots\!99}a^{18}+\frac{97174183680}{78\!\cdots\!99}a^{17}-\frac{33\!\cdots\!69}{78\!\cdots\!99}a^{16}-\frac{1699160011776}{78\!\cdots\!99}a^{15}-\frac{16\!\cdots\!38}{78\!\cdots\!99}a^{14}+\frac{19719199084032}{78\!\cdots\!99}a^{13}+\frac{37\!\cdots\!80}{78\!\cdots\!99}a^{12}-\frac{151910867017728}{78\!\cdots\!99}a^{11}+\frac{35\!\cdots\!07}{78\!\cdots\!99}a^{10}+\frac{758277773180928}{78\!\cdots\!99}a^{9}-\frac{20\!\cdots\!43}{78\!\cdots\!99}a^{8}-\frac{23\!\cdots\!20}{78\!\cdots\!99}a^{7}+\frac{23\!\cdots\!85}{78\!\cdots\!99}a^{6}+\frac{39\!\cdots\!72}{78\!\cdots\!99}a^{5}-\frac{15\!\cdots\!25}{78\!\cdots\!99}a^{4}-\frac{31\!\cdots\!24}{78\!\cdots\!99}a^{3}-\frac{11\!\cdots\!55}{78\!\cdots\!99}a^{2}+\frac{736309685846016}{78\!\cdots\!99}a+\frac{24\!\cdots\!98}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{30}-\frac{10\!\cdots\!15}{78\!\cdots\!99}a^{23}-\frac{35516880}{78\!\cdots\!99}a^{22}+\frac{18\!\cdots\!22}{78\!\cdots\!99}a^{21}+\frac{3580101504}{78\!\cdots\!99}a^{20}+\frac{31\!\cdots\!76}{78\!\cdots\!99}a^{19}-\frac{161956972800}{78\!\cdots\!99}a^{18}-\frac{39\!\cdots\!50}{78\!\cdots\!99}a^{17}+\frac{4247900029440}{78\!\cdots\!99}a^{16}-\frac{30\!\cdots\!36}{78\!\cdots\!99}a^{15}-\frac{70425711014400}{78\!\cdots\!99}a^{14}-\frac{14\!\cdots\!45}{78\!\cdots\!99}a^{13}+\frac{759554335088640}{78\!\cdots\!99}a^{12}+\frac{10\!\cdots\!53}{78\!\cdots\!99}a^{11}-\frac{53\!\cdots\!96}{78\!\cdots\!99}a^{10}-\frac{10\!\cdots\!98}{78\!\cdots\!99}a^{9}+\frac{23\!\cdots\!00}{78\!\cdots\!99}a^{8}-\frac{34\!\cdots\!17}{78\!\cdots\!99}a^{7}-\frac{59\!\cdots\!80}{78\!\cdots\!99}a^{6}-\frac{20\!\cdots\!20}{78\!\cdots\!99}a^{5}+\frac{78\!\cdots\!00}{78\!\cdots\!99}a^{4}+\frac{12\!\cdots\!94}{78\!\cdots\!99}a^{3}-\frac{40\!\cdots\!80}{78\!\cdots\!99}a^{2}-\frac{33\!\cdots\!06}{78\!\cdots\!99}a+\frac{34\!\cdots\!08}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{31}-\frac{40778640}{78\!\cdots\!99}a^{23}+\frac{23\!\cdots\!42}{78\!\cdots\!99}a^{22}+\frac{4306224384}{78\!\cdots\!99}a^{21}+\frac{25\!\cdots\!12}{78\!\cdots\!99}a^{20}-\frac{205524345600}{78\!\cdots\!99}a^{19}-\frac{39\!\cdots\!03}{78\!\cdots\!99}a^{18}+\frac{5737904179200}{78\!\cdots\!99}a^{17}-\frac{27\!\cdots\!40}{78\!\cdots\!99}a^{16}-\frac{102421589598720}{78\!\cdots\!99}a^{15}-\frac{28\!\cdots\!11}{78\!\cdots\!99}a^{14}+\frac{12\!\cdots\!20}{78\!\cdots\!99}a^{13}+\frac{26\!\cdots\!57}{78\!\cdots\!99}a^{12}-\frac{94\!\cdots\!36}{78\!\cdots\!99}a^{11}-\frac{16\!\cdots\!57}{78\!\cdots\!99}a^{10}+\frac{47\!\cdots\!00}{78\!\cdots\!99}a^{9}+\frac{14\!\cdots\!66}{78\!\cdots\!99}a^{8}-\frac{14\!\cdots\!00}{78\!\cdots\!99}a^{7}+\frac{31\!\cdots\!09}{78\!\cdots\!99}a^{6}+\frac{25\!\cdots\!40}{78\!\cdots\!99}a^{5}-\frac{21\!\cdots\!58}{78\!\cdots\!99}a^{4}-\frac{20\!\cdots\!40}{78\!\cdots\!99}a^{3}-\frac{45\!\cdots\!67}{78\!\cdots\!99}a^{2}+\frac{47\!\cdots\!88}{78\!\cdots\!99}a-\frac{19\!\cdots\!53}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{32}+\frac{28\!\cdots\!38}{78\!\cdots\!99}a^{23}-\frac{1565899776}{78\!\cdots\!99}a^{22}-\frac{24\!\cdots\!44}{78\!\cdots\!99}a^{21}+\frac{164419476480}{78\!\cdots\!99}a^{20}-\frac{10\!\cdots\!05}{78\!\cdots\!99}a^{19}-\frac{7650538905600}{78\!\cdots\!99}a^{18}+\frac{18\!\cdots\!51}{78\!\cdots\!99}a^{17}+\frac{204843179197440}{78\!\cdots\!99}a^{16}+\frac{28\!\cdots\!16}{78\!\cdots\!99}a^{15}-\frac{34\!\cdots\!00}{78\!\cdots\!99}a^{14}-\frac{25\!\cdots\!26}{78\!\cdots\!99}a^{13}+\frac{37\!\cdots\!44}{78\!\cdots\!99}a^{12}+\frac{26\!\cdots\!69}{78\!\cdots\!99}a^{11}-\frac{26\!\cdots\!40}{78\!\cdots\!99}a^{10}+\frac{13\!\cdots\!31}{78\!\cdots\!99}a^{9}+\frac{39\!\cdots\!01}{78\!\cdots\!99}a^{8}+\frac{35\!\cdots\!15}{78\!\cdots\!99}a^{7}+\frac{98\!\cdots\!16}{78\!\cdots\!99}a^{6}-\frac{28\!\cdots\!70}{78\!\cdots\!99}a^{5}+\frac{10\!\cdots\!05}{78\!\cdots\!99}a^{4}+\frac{26\!\cdots\!13}{78\!\cdots\!99}a^{3}+\frac{26\!\cdots\!25}{78\!\cdots\!99}a^{2}+\frac{36\!\cdots\!88}{78\!\cdots\!99}a+\frac{17\!\cdots\!80}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{33}-\frac{1845524736}{78\!\cdots\!99}a^{23}+\frac{10\!\cdots\!79}{78\!\cdots\!99}a^{22}+\frac{203007720960}{78\!\cdots\!99}a^{21}+\frac{27\!\cdots\!18}{78\!\cdots\!99}a^{20}-\frac{9965833574400}{78\!\cdots\!99}a^{19}-\frac{87\!\cdots\!13}{78\!\cdots\!99}a^{18}+\frac{284026256870400}{78\!\cdots\!99}a^{17}-\frac{45\!\cdots\!37}{78\!\cdots\!99}a^{16}-\frac{51\!\cdots\!20}{78\!\cdots\!99}a^{15}-\frac{16\!\cdots\!95}{78\!\cdots\!99}a^{14}+\frac{61\!\cdots\!24}{78\!\cdots\!99}a^{13}+\frac{30\!\cdots\!21}{78\!\cdots\!99}a^{12}+\frac{29\!\cdots\!19}{78\!\cdots\!99}a^{11}-\frac{26\!\cdots\!51}{78\!\cdots\!99}a^{10}+\frac{11\!\cdots\!03}{78\!\cdots\!99}a^{9}-\frac{17\!\cdots\!55}{78\!\cdots\!99}a^{8}+\frac{16\!\cdots\!90}{78\!\cdots\!99}a^{7}+\frac{23\!\cdots\!63}{78\!\cdots\!99}a^{6}-\frac{32\!\cdots\!43}{78\!\cdots\!99}a^{5}+\frac{16\!\cdots\!27}{78\!\cdots\!99}a^{4}+\frac{33\!\cdots\!54}{78\!\cdots\!99}a^{3}+\frac{38\!\cdots\!74}{78\!\cdots\!99}a^{2}+\frac{15\!\cdots\!63}{78\!\cdots\!99}a+\frac{39\!\cdots\!84}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{34}+\frac{57\!\cdots\!38}{78\!\cdots\!99}a^{23}-\frac{62747841024}{78\!\cdots\!99}a^{22}-\frac{63\!\cdots\!16}{78\!\cdots\!99}a^{21}+\frac{6776766830592}{78\!\cdots\!99}a^{20}+\frac{34\!\cdots\!52}{78\!\cdots\!99}a^{19}-\frac{321896424453120}{78\!\cdots\!99}a^{18}-\frac{13\!\cdots\!79}{78\!\cdots\!99}a^{17}+\frac{87\!\cdots\!64}{78\!\cdots\!99}a^{16}-\frac{81\!\cdots\!52}{78\!\cdots\!99}a^{15}-\frac{14\!\cdots\!44}{78\!\cdots\!99}a^{14}-\frac{58\!\cdots\!82}{78\!\cdots\!99}a^{13}+\frac{78\!\cdots\!54}{78\!\cdots\!99}a^{12}-\frac{34\!\cdots\!78}{78\!\cdots\!99}a^{11}+\frac{40\!\cdots\!09}{78\!\cdots\!99}a^{10}+\frac{24\!\cdots\!83}{78\!\cdots\!99}a^{9}-\frac{37\!\cdots\!53}{78\!\cdots\!99}a^{8}-\frac{31\!\cdots\!54}{78\!\cdots\!99}a^{7}+\frac{21\!\cdots\!19}{78\!\cdots\!99}a^{6}-\frac{31\!\cdots\!37}{78\!\cdots\!99}a^{5}-\frac{29\!\cdots\!25}{78\!\cdots\!99}a^{4}-\frac{20\!\cdots\!81}{78\!\cdots\!99}a^{3}+\frac{19\!\cdots\!36}{78\!\cdots\!99}a^{2}-\frac{90\!\cdots\!82}{78\!\cdots\!99}a+\frac{19\!\cdots\!02}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{35}-\frac{75730152960}{78\!\cdots\!99}a^{23}-\frac{38\!\cdots\!33}{78\!\cdots\!99}a^{22}+\frac{8568325877760}{78\!\cdots\!99}a^{21}-\frac{82\!\cdots\!51}{78\!\cdots\!99}a^{20}-\frac{429389967283200}{78\!\cdots\!99}a^{19}-\frac{88\!\cdots\!60}{78\!\cdots\!99}a^{18}+\frac{12\!\cdots\!00}{78\!\cdots\!99}a^{17}+\frac{42\!\cdots\!29}{78\!\cdots\!99}a^{16}-\frac{22\!\cdots\!96}{78\!\cdots\!99}a^{15}-\frac{15\!\cdots\!91}{78\!\cdots\!99}a^{14}-\frac{38\!\cdots\!16}{78\!\cdots\!99}a^{13}-\frac{30\!\cdots\!08}{78\!\cdots\!99}a^{12}+\frac{92\!\cdots\!92}{78\!\cdots\!99}a^{11}-\frac{70\!\cdots\!31}{78\!\cdots\!99}a^{10}-\frac{20\!\cdots\!57}{78\!\cdots\!99}a^{9}+\frac{32\!\cdots\!36}{78\!\cdots\!99}a^{8}-\frac{26\!\cdots\!47}{78\!\cdots\!99}a^{7}+\frac{25\!\cdots\!14}{78\!\cdots\!99}a^{6}+\frac{28\!\cdots\!07}{78\!\cdots\!99}a^{5}+\frac{29\!\cdots\!09}{78\!\cdots\!99}a^{4}-\frac{21\!\cdots\!86}{78\!\cdots\!99}a^{3}-\frac{33\!\cdots\!56}{78\!\cdots\!99}a^{2}+\frac{30\!\cdots\!08}{78\!\cdots\!99}a-\frac{11\!\cdots\!52}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{36}+\frac{70\!\cdots\!99}{78\!\cdots\!99}a^{23}-\frac{2336816148480}{78\!\cdots\!99}a^{22}+\frac{38\!\cdots\!53}{78\!\cdots\!99}a^{21}+\frac{257633980369920}{78\!\cdots\!99}a^{20}+\frac{28\!\cdots\!64}{78\!\cdots\!99}a^{19}-\frac{12\!\cdots\!00}{78\!\cdots\!99}a^{18}+\frac{11\!\cdots\!52}{78\!\cdots\!99}a^{17}+\frac{34\!\cdots\!44}{78\!\cdots\!99}a^{16}+\frac{24\!\cdots\!60}{78\!\cdots\!99}a^{15}+\frac{37\!\cdots\!92}{78\!\cdots\!99}a^{14}+\frac{33\!\cdots\!70}{78\!\cdots\!99}a^{13}-\frac{27\!\cdots\!76}{78\!\cdots\!99}a^{12}-\frac{18\!\cdots\!60}{78\!\cdots\!99}a^{11}+\frac{38\!\cdots\!40}{78\!\cdots\!99}a^{10}-\frac{67\!\cdots\!56}{78\!\cdots\!99}a^{9}+\frac{37\!\cdots\!84}{78\!\cdots\!99}a^{8}+\frac{27\!\cdots\!67}{78\!\cdots\!99}a^{7}-\frac{24\!\cdots\!66}{78\!\cdots\!99}a^{6}+\frac{26\!\cdots\!03}{78\!\cdots\!99}a^{5}+\frac{13\!\cdots\!94}{78\!\cdots\!99}a^{4}-\frac{65\!\cdots\!20}{78\!\cdots\!99}a^{3}+\frac{10\!\cdots\!23}{78\!\cdots\!99}a^{2}+\frac{31\!\cdots\!83}{78\!\cdots\!99}a+\frac{34\!\cdots\!40}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{37}-\frac{2882073249792}{78\!\cdots\!99}a^{23}-\frac{37\!\cdots\!77}{78\!\cdots\!99}a^{22}+\frac{332879460350976}{78\!\cdots\!99}a^{21}+\frac{24\!\cdots\!15}{78\!\cdots\!99}a^{20}-\frac{16\!\cdots\!60}{78\!\cdots\!99}a^{19}+\frac{82\!\cdots\!46}{78\!\cdots\!99}a^{18}-\frac{28\!\cdots\!43}{78\!\cdots\!99}a^{17}-\frac{52\!\cdots\!31}{78\!\cdots\!99}a^{16}+\frac{19\!\cdots\!04}{78\!\cdots\!99}a^{15}+\frac{11\!\cdots\!87}{78\!\cdots\!99}a^{14}-\frac{12\!\cdots\!41}{78\!\cdots\!99}a^{13}-\frac{74\!\cdots\!18}{78\!\cdots\!99}a^{12}+\frac{22\!\cdots\!29}{78\!\cdots\!99}a^{11}-\frac{14\!\cdots\!49}{78\!\cdots\!99}a^{10}+\frac{18\!\cdots\!25}{78\!\cdots\!99}a^{9}-\frac{121197134148018}{78\!\cdots\!99}a^{8}+\frac{13\!\cdots\!46}{78\!\cdots\!99}a^{7}-\frac{19\!\cdots\!24}{78\!\cdots\!99}a^{6}+\frac{15\!\cdots\!69}{78\!\cdots\!99}a^{5}-\frac{14\!\cdots\!13}{78\!\cdots\!99}a^{4}-\frac{35\!\cdots\!23}{78\!\cdots\!99}a^{3}+\frac{35\!\cdots\!62}{78\!\cdots\!99}a^{2}+\frac{38\!\cdots\!98}{78\!\cdots\!99}a+\frac{62\!\cdots\!10}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{38}-\frac{36\!\cdots\!63}{78\!\cdots\!99}a^{23}-\frac{82139087619072}{78\!\cdots\!99}a^{22}-\frac{38\!\cdots\!18}{78\!\cdots\!99}a^{21}+\frac{91\!\cdots\!64}{78\!\cdots\!99}a^{20}-\frac{35\!\cdots\!25}{78\!\cdots\!99}a^{19}+\frac{33\!\cdots\!15}{78\!\cdots\!99}a^{18}+\frac{23\!\cdots\!96}{78\!\cdots\!99}a^{17}-\frac{43\!\cdots\!20}{78\!\cdots\!99}a^{16}+\frac{23\!\cdots\!73}{78\!\cdots\!99}a^{15}+\frac{53\!\cdots\!43}{78\!\cdots\!99}a^{14}-\frac{18\!\cdots\!24}{78\!\cdots\!99}a^{13}-\frac{28\!\cdots\!22}{78\!\cdots\!99}a^{12}+\frac{10\!\cdots\!07}{78\!\cdots\!99}a^{11}-\frac{69\!\cdots\!95}{78\!\cdots\!99}a^{10}-\frac{14\!\cdots\!64}{78\!\cdots\!99}a^{9}-\frac{78\!\cdots\!22}{78\!\cdots\!99}a^{8}+\frac{15\!\cdots\!42}{78\!\cdots\!99}a^{7}+\frac{10\!\cdots\!08}{78\!\cdots\!99}a^{6}+\frac{22\!\cdots\!54}{78\!\cdots\!99}a^{5}+\frac{36\!\cdots\!98}{78\!\cdots\!99}a^{4}+\frac{11\!\cdots\!54}{78\!\cdots\!99}a^{3}+\frac{26\!\cdots\!02}{78\!\cdots\!99}a^{2}+\frac{15\!\cdots\!94}{78\!\cdots\!99}a-\frac{25\!\cdots\!75}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{39}-\frac{103336271520768}{78\!\cdots\!99}a^{23}+\frac{11\!\cdots\!42}{78\!\cdots\!99}a^{22}+\frac{12\!\cdots\!12}{78\!\cdots\!99}a^{21}-\frac{32\!\cdots\!45}{78\!\cdots\!99}a^{20}+\frac{15\!\cdots\!35}{78\!\cdots\!99}a^{19}-\frac{32\!\cdots\!57}{78\!\cdots\!99}a^{18}-\frac{31\!\cdots\!16}{78\!\cdots\!99}a^{17}-\frac{12\!\cdots\!79}{78\!\cdots\!99}a^{16}-\frac{23\!\cdots\!93}{78\!\cdots\!99}a^{15}-\frac{33\!\cdots\!76}{78\!\cdots\!99}a^{14}-\frac{11\!\cdots\!13}{78\!\cdots\!99}a^{13}+\frac{21\!\cdots\!46}{78\!\cdots\!99}a^{12}-\frac{11\!\cdots\!56}{78\!\cdots\!99}a^{11}+\frac{22\!\cdots\!17}{78\!\cdots\!99}a^{10}-\frac{25\!\cdots\!62}{78\!\cdots\!99}a^{9}-\frac{66\!\cdots\!61}{78\!\cdots\!99}a^{8}-\frac{12\!\cdots\!87}{78\!\cdots\!99}a^{7}-\frac{16\!\cdots\!40}{78\!\cdots\!99}a^{6}-\frac{15\!\cdots\!11}{78\!\cdots\!99}a^{5}+\frac{64\!\cdots\!04}{78\!\cdots\!99}a^{4}+\frac{38\!\cdots\!80}{78\!\cdots\!99}a^{3}-\frac{13\!\cdots\!70}{78\!\cdots\!99}a^{2}-\frac{28\!\cdots\!69}{78\!\cdots\!99}a+\frac{24\!\cdots\!72}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{40}-\frac{22\!\cdots\!89}{78\!\cdots\!99}a^{23}-\frac{27\!\cdots\!80}{78\!\cdots\!99}a^{22}+\frac{33\!\cdots\!92}{78\!\cdots\!99}a^{21}+\frac{31\!\cdots\!32}{78\!\cdots\!99}a^{20}-\frac{25\!\cdots\!28}{78\!\cdots\!99}a^{19}+\frac{26\!\cdots\!80}{78\!\cdots\!99}a^{18}+\frac{29\!\cdots\!76}{78\!\cdots\!99}a^{17}-\frac{28\!\cdots\!08}{78\!\cdots\!99}a^{16}+\frac{23\!\cdots\!80}{78\!\cdots\!99}a^{15}+\frac{31\!\cdots\!52}{78\!\cdots\!99}a^{14}-\frac{18\!\cdots\!48}{78\!\cdots\!99}a^{13}+\frac{27\!\cdots\!40}{78\!\cdots\!99}a^{12}-\frac{12\!\cdots\!47}{78\!\cdots\!99}a^{11}+\frac{12\!\cdots\!18}{78\!\cdots\!99}a^{10}-\frac{24\!\cdots\!17}{78\!\cdots\!99}a^{9}-\frac{17\!\cdots\!64}{78\!\cdots\!99}a^{8}+\frac{15\!\cdots\!21}{78\!\cdots\!99}a^{7}-\frac{27\!\cdots\!66}{78\!\cdots\!99}a^{6}+\frac{20\!\cdots\!81}{78\!\cdots\!99}a^{5}-\frac{11\!\cdots\!06}{78\!\cdots\!99}a^{4}-\frac{38\!\cdots\!64}{78\!\cdots\!99}a^{3}+\frac{37\!\cdots\!57}{78\!\cdots\!99}a^{2}-\frac{19\!\cdots\!02}{78\!\cdots\!99}a-\frac{18\!\cdots\!02}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{41}-\frac{35\!\cdots\!40}{78\!\cdots\!99}a^{23}+\frac{28\!\cdots\!34}{78\!\cdots\!99}a^{22}-\frac{36\!\cdots\!87}{78\!\cdots\!99}a^{21}-\frac{34\!\cdots\!70}{78\!\cdots\!99}a^{20}+\frac{11\!\cdots\!72}{78\!\cdots\!99}a^{19}+\frac{14\!\cdots\!06}{78\!\cdots\!99}a^{18}-\frac{38\!\cdots\!68}{78\!\cdots\!99}a^{17}-\frac{38\!\cdots\!31}{78\!\cdots\!99}a^{16}+\frac{12\!\cdots\!22}{78\!\cdots\!99}a^{15}+\frac{13\!\cdots\!62}{78\!\cdots\!99}a^{14}-\frac{31\!\cdots\!41}{78\!\cdots\!99}a^{13}-\frac{25\!\cdots\!06}{78\!\cdots\!99}a^{12}-\frac{32\!\cdots\!14}{78\!\cdots\!99}a^{11}+\frac{16\!\cdots\!43}{78\!\cdots\!99}a^{10}-\frac{14\!\cdots\!35}{78\!\cdots\!99}a^{9}+\frac{35\!\cdots\!76}{78\!\cdots\!99}a^{8}+\frac{32\!\cdots\!29}{78\!\cdots\!99}a^{7}-\frac{20\!\cdots\!36}{78\!\cdots\!99}a^{6}-\frac{31\!\cdots\!97}{78\!\cdots\!99}a^{5}+\frac{24\!\cdots\!72}{78\!\cdots\!99}a^{4}-\frac{24\!\cdots\!66}{78\!\cdots\!99}a^{3}+\frac{19\!\cdots\!44}{78\!\cdots\!99}a^{2}-\frac{30\!\cdots\!59}{78\!\cdots\!99}a+\frac{98\!\cdots\!21}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{42}-\frac{22\!\cdots\!06}{78\!\cdots\!99}a^{23}-\frac{88\!\cdots\!48}{78\!\cdots\!99}a^{22}+\frac{16\!\cdots\!39}{78\!\cdots\!99}a^{21}-\frac{28\!\cdots\!07}{78\!\cdots\!99}a^{20}-\frac{26\!\cdots\!73}{78\!\cdots\!99}a^{19}+\frac{21\!\cdots\!53}{78\!\cdots\!99}a^{18}-\frac{87\!\cdots\!12}{78\!\cdots\!99}a^{17}+\frac{37\!\cdots\!07}{78\!\cdots\!99}a^{16}+\frac{42\!\cdots\!67}{78\!\cdots\!99}a^{15}+\frac{25\!\cdots\!02}{78\!\cdots\!99}a^{14}+\frac{11\!\cdots\!23}{78\!\cdots\!99}a^{13}+\frac{75\!\cdots\!66}{78\!\cdots\!99}a^{12}-\frac{11\!\cdots\!92}{78\!\cdots\!99}a^{11}+\frac{21\!\cdots\!48}{78\!\cdots\!99}a^{10}+\frac{21\!\cdots\!98}{78\!\cdots\!99}a^{9}+\frac{54\!\cdots\!96}{78\!\cdots\!99}a^{8}+\frac{11\!\cdots\!45}{78\!\cdots\!99}a^{7}+\frac{22\!\cdots\!79}{78\!\cdots\!99}a^{6}-\frac{38\!\cdots\!90}{78\!\cdots\!99}a^{5}-\frac{11\!\cdots\!93}{78\!\cdots\!99}a^{4}+\frac{36\!\cdots\!71}{78\!\cdots\!99}a^{3}-\frac{34\!\cdots\!42}{78\!\cdots\!99}a^{2}+\frac{53\!\cdots\!50}{78\!\cdots\!99}a-\frac{61\!\cdots\!43}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{43}-\frac{11\!\cdots\!08}{78\!\cdots\!99}a^{23}-\frac{24\!\cdots\!65}{78\!\cdots\!99}a^{22}-\frac{20\!\cdots\!22}{78\!\cdots\!99}a^{21}-\frac{11\!\cdots\!88}{78\!\cdots\!99}a^{20}-\frac{31\!\cdots\!31}{78\!\cdots\!99}a^{19}-\frac{14\!\cdots\!33}{78\!\cdots\!99}a^{18}-\frac{30\!\cdots\!96}{78\!\cdots\!99}a^{17}-\frac{16\!\cdots\!64}{78\!\cdots\!99}a^{16}-\frac{37\!\cdots\!88}{78\!\cdots\!99}a^{15}-\frac{16\!\cdots\!08}{78\!\cdots\!99}a^{14}+\frac{33\!\cdots\!37}{78\!\cdots\!99}a^{13}+\frac{34\!\cdots\!58}{78\!\cdots\!99}a^{12}+\frac{28\!\cdots\!58}{78\!\cdots\!99}a^{11}-\frac{23\!\cdots\!12}{78\!\cdots\!99}a^{10}+\frac{22\!\cdots\!97}{78\!\cdots\!99}a^{9}+\frac{12\!\cdots\!49}{78\!\cdots\!99}a^{8}-\frac{93\!\cdots\!85}{78\!\cdots\!99}a^{7}+\frac{32\!\cdots\!48}{78\!\cdots\!99}a^{6}-\frac{16\!\cdots\!64}{78\!\cdots\!99}a^{5}+\frac{23\!\cdots\!64}{78\!\cdots\!99}a^{4}+\frac{33\!\cdots\!69}{78\!\cdots\!99}a^{3}+\frac{16\!\cdots\!04}{78\!\cdots\!99}a^{2}-\frac{34\!\cdots\!19}{78\!\cdots\!99}a-\frac{38\!\cdots\!04}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{44}-\frac{29\!\cdots\!67}{78\!\cdots\!99}a^{23}+\frac{35\!\cdots\!04}{78\!\cdots\!99}a^{22}+\frac{21\!\cdots\!96}{78\!\cdots\!99}a^{21}-\frac{14\!\cdots\!14}{78\!\cdots\!99}a^{20}+\frac{25\!\cdots\!01}{78\!\cdots\!99}a^{19}+\frac{12\!\cdots\!04}{78\!\cdots\!99}a^{18}-\frac{33\!\cdots\!24}{78\!\cdots\!99}a^{17}+\frac{25\!\cdots\!47}{78\!\cdots\!99}a^{16}+\frac{29\!\cdots\!95}{78\!\cdots\!99}a^{15}+\frac{28\!\cdots\!84}{78\!\cdots\!99}a^{14}+\frac{19\!\cdots\!08}{78\!\cdots\!99}a^{13}-\frac{32\!\cdots\!68}{78\!\cdots\!99}a^{12}+\frac{14\!\cdots\!13}{78\!\cdots\!99}a^{11}+\frac{26\!\cdots\!92}{78\!\cdots\!99}a^{10}+\frac{18\!\cdots\!64}{78\!\cdots\!99}a^{9}-\frac{37\!\cdots\!45}{78\!\cdots\!99}a^{8}+\frac{11\!\cdots\!14}{78\!\cdots\!99}a^{7}-\frac{16\!\cdots\!16}{78\!\cdots\!99}a^{6}-\frac{13\!\cdots\!67}{78\!\cdots\!99}a^{5}+\frac{22\!\cdots\!36}{78\!\cdots\!99}a^{4}+\frac{18\!\cdots\!79}{78\!\cdots\!99}a^{3}-\frac{10\!\cdots\!19}{78\!\cdots\!99}a^{2}+\frac{13\!\cdots\!93}{78\!\cdots\!99}a+\frac{61\!\cdots\!00}{78\!\cdots\!99}$, $\frac{1}{78\!\cdots\!99}a^{45}+\frac{23\!\cdots\!35}{78\!\cdots\!99}a^{23}-\frac{35\!\cdots\!05}{78\!\cdots\!99}a^{22}+\frac{18\!\cdots\!28}{78\!\cdots\!99}a^{21}+\frac{22\!\cdots\!10}{78\!\cdots\!99}a^{20}-\frac{23\!\cdots\!41}{78\!\cdots\!99}a^{19}-\frac{13\!\cdots\!68}{78\!\cdots\!99}a^{18}-\frac{89\!\cdots\!12}{78\!\cdots\!99}a^{17}+\frac{35\!\cdots\!04}{78\!\cdots\!99}a^{16}-\frac{27\!\cdots\!97}{78\!\cdots\!99}a^{15}+\frac{55\!\cdots\!81}{78\!\cdots\!99}a^{14}+\frac{74\!\cdots\!71}{78\!\cdots\!99}a^{13}+\frac{78\!\cdots\!21}{78\!\cdots\!99}a^{12}+\frac{46\!\cdots\!07}{78\!\cdots\!99}a^{11}-\frac{26\!\cdots\!64}{78\!\cdots\!99}a^{10}-\frac{28\!\cdots\!89}{78\!\cdots\!99}a^{9}+\frac{35\!\cdots\!03}{78\!\cdots\!99}a^{8}-\frac{18\!\cdots\!18}{78\!\cdots\!99}a^{7}-\frac{17\!\cdots\!67}{78\!\cdots\!99}a^{6}+\frac{26\!\cdots\!40}{78\!\cdots\!99}a^{5}+\frac{44\!\cdots\!65}{78\!\cdots\!99}a^{4}-\frac{89\!\cdots\!92}{78\!\cdots\!99}a^{3}-\frac{21\!\cdots\!36}{78\!\cdots\!99}a^{2}+\frac{14\!\cdots\!47}{78\!\cdots\!99}a-\frac{18\!\cdots\!64}{78\!\cdots\!99}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $45$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 - 281*x^44 + 281*x^43 + 36943*x^42 - 36943*x^41 - 3018809*x^40 + 3018809*x^39 + 171798631*x^38 - 171798631*x^37 - 7230471257*x^36 + 7230471257*x^35 + 233253028519*x^34 - 233253028519*x^33 - 5899076215769*x^32 + 5899076215769*x^31 + 118634379206695*x^30 - 118634379206695*x^29 - 1913227261896665*x^28 + 1913227261896665*x^27 + 24841448185280551*x^26 - 24841448185280551*x^25 - 259731008843786201*x^24 + 259731008843786201*x^23 + 2179461479976785959*x^22 - 2179461479976785959*x^21 - 14574810909297551321*x^20 + 14574810909297551321*x^19 + 76812129395835197479*x^18 - 76812129395835197479*x^17 - 313867040408607303641*x^16 + 313867040408607303641*x^15 + 971593453786655119399*x^14 - 971593453786655119399*x^13 - 2204250120107522631641*x^12 + 2204250120107522631641*x^11 + 3490365943426865059879*x^10 - 3490365943426865059879*x^9 - 3574383308326322677721*x^8 + 3574383308326322677721*x^7 + 2077416093076227512359*x^6 - 2077416093076227512359*x^5 - 531106707571103344601*x^4 + 531106707571103344601*x^3 + 38025539842859751463*x^2 - 38025539842859751463*x + 908219359340419111)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^46 - x^45 - 281*x^44 + 281*x^43 + 36943*x^42 - 36943*x^41 - 3018809*x^40 + 3018809*x^39 + 171798631*x^38 - 171798631*x^37 - 7230471257*x^36 + 7230471257*x^35 + 233253028519*x^34 - 233253028519*x^33 - 5899076215769*x^32 + 5899076215769*x^31 + 118634379206695*x^30 - 118634379206695*x^29 - 1913227261896665*x^28 + 1913227261896665*x^27 + 24841448185280551*x^26 - 24841448185280551*x^25 - 259731008843786201*x^24 + 259731008843786201*x^23 + 2179461479976785959*x^22 - 2179461479976785959*x^21 - 14574810909297551321*x^20 + 14574810909297551321*x^19 + 76812129395835197479*x^18 - 76812129395835197479*x^17 - 313867040408607303641*x^16 + 313867040408607303641*x^15 + 971593453786655119399*x^14 - 971593453786655119399*x^13 - 2204250120107522631641*x^12 + 2204250120107522631641*x^11 + 3490365943426865059879*x^10 - 3490365943426865059879*x^9 - 3574383308326322677721*x^8 + 3574383308326322677721*x^7 + 2077416093076227512359*x^6 - 2077416093076227512359*x^5 - 531106707571103344601*x^4 + 531106707571103344601*x^3 + 38025539842859751463*x^2 - 38025539842859751463*x + 908219359340419111, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^46 - x^45 - 281*x^44 + 281*x^43 + 36943*x^42 - 36943*x^41 - 3018809*x^40 + 3018809*x^39 + 171798631*x^38 - 171798631*x^37 - 7230471257*x^36 + 7230471257*x^35 + 233253028519*x^34 - 233253028519*x^33 - 5899076215769*x^32 + 5899076215769*x^31 + 118634379206695*x^30 - 118634379206695*x^29 - 1913227261896665*x^28 + 1913227261896665*x^27 + 24841448185280551*x^26 - 24841448185280551*x^25 - 259731008843786201*x^24 + 259731008843786201*x^23 + 2179461479976785959*x^22 - 2179461479976785959*x^21 - 14574810909297551321*x^20 + 14574810909297551321*x^19 + 76812129395835197479*x^18 - 76812129395835197479*x^17 - 313867040408607303641*x^16 + 313867040408607303641*x^15 + 971593453786655119399*x^14 - 971593453786655119399*x^13 - 2204250120107522631641*x^12 + 2204250120107522631641*x^11 + 3490365943426865059879*x^10 - 3490365943426865059879*x^9 - 3574383308326322677721*x^8 + 3574383308326322677721*x^7 + 2077416093076227512359*x^6 - 2077416093076227512359*x^5 - 531106707571103344601*x^4 + 531106707571103344601*x^3 + 38025539842859751463*x^2 - 38025539842859751463*x + 908219359340419111);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - x^45 - 281*x^44 + 281*x^43 + 36943*x^42 - 36943*x^41 - 3018809*x^40 + 3018809*x^39 + 171798631*x^38 - 171798631*x^37 - 7230471257*x^36 + 7230471257*x^35 + 233253028519*x^34 - 233253028519*x^33 - 5899076215769*x^32 + 5899076215769*x^31 + 118634379206695*x^30 - 118634379206695*x^29 - 1913227261896665*x^28 + 1913227261896665*x^27 + 24841448185280551*x^26 - 24841448185280551*x^25 - 259731008843786201*x^24 + 259731008843786201*x^23 + 2179461479976785959*x^22 - 2179461479976785959*x^21 - 14574810909297551321*x^20 + 14574810909297551321*x^19 + 76812129395835197479*x^18 - 76812129395835197479*x^17 - 313867040408607303641*x^16 + 313867040408607303641*x^15 + 971593453786655119399*x^14 - 971593453786655119399*x^13 - 2204250120107522631641*x^12 + 2204250120107522631641*x^11 + 3490365943426865059879*x^10 - 3490365943426865059879*x^9 - 3574383308326322677721*x^8 + 3574383308326322677721*x^7 + 2077416093076227512359*x^6 - 2077416093076227512359*x^5 - 531106707571103344601*x^4 + 531106707571103344601*x^3 + 38025539842859751463*x^2 - 38025539842859751463*x + 908219359340419111);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{46}$ (as 46T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$

Intermediate fields

\(\Q(\sqrt{1081}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23^{2}$ $23^{2}$ $23^{2}$ $46$ $23^{2}$ $46$ $46$ $23^{2}$ R $46$ $46$ $46$ $46$ $23^{2}$ R $46$ $23^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(23\) Copy content Toggle raw display Deg $46$$2$$23$$23$
\(47\) Copy content Toggle raw display Deg $46$$46$$1$$45$