magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8388608, 0, 1157627904, 0, -26528972800, 0, 241413652480, 0, -1163958681600, 0, 3440144547840, 0, -6802103992320, 0, 9530420428800, 0, -9848101109760, 0, 7724000870400, 0, -4695379476480, 0, 2246058147840, 0, -854478643200, 0, 260287340544, 0, -63694653440, 0, 12519293952, 0, -1968759936, 0, 245656320, 0, -23980736, 0, 1790880, 0, -98728, 0, 3784, 0, -90, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 90*x^44 + 3784*x^42 - 98728*x^40 + 1790880*x^38 - 23980736*x^36 + 245656320*x^34 - 1968759936*x^32 + 12519293952*x^30 - 63694653440*x^28 + 260287340544*x^26 - 854478643200*x^24 + 2246058147840*x^22 - 4695379476480*x^20 + 7724000870400*x^18 - 9848101109760*x^16 + 9530420428800*x^14 - 6802103992320*x^12 + 3440144547840*x^10 - 1163958681600*x^8 + 241413652480*x^6 - 26528972800*x^4 + 1157627904*x^2 - 8388608)
gp: K = bnfinit(x^46 - 90*x^44 + 3784*x^42 - 98728*x^40 + 1790880*x^38 - 23980736*x^36 + 245656320*x^34 - 1968759936*x^32 + 12519293952*x^30 - 63694653440*x^28 + 260287340544*x^26 - 854478643200*x^24 + 2246058147840*x^22 - 4695379476480*x^20 + 7724000870400*x^18 - 9848101109760*x^16 + 9530420428800*x^14 - 6802103992320*x^12 + 3440144547840*x^10 - 1163958681600*x^8 + 241413652480*x^6 - 26528972800*x^4 + 1157627904*x^2 - 8388608, 1)
\( x^{46} - 90 x^{44} + 3784 x^{42} - 98728 x^{40} + 1790880 x^{38} - 23980736 x^{36} + 245656320 x^{34} - 1968759936 x^{32} + 12519293952 x^{30} - 63694653440 x^{28} + 260287340544 x^{26} - 854478643200 x^{24} + 2246058147840 x^{22} - 4695379476480 x^{20} + 7724000870400 x^{18} - 9848101109760 x^{16} + 9530420428800 x^{14} - 6802103992320 x^{12} + 3440144547840 x^{10} - 1163958681600 x^{8} + 241413652480 x^{6} - 26528972800 x^{4} + 1157627904 x^{2} - 8388608 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $46$ |
|
| Signature: | | $[46, 0]$ |
|
| Discriminant: | | \(22048317286260592124444353227775948209084132414256608507828666339058160374378508639437661929472=2^{69}\cdot 47^{44}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $112.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(376=2^{3}\cdot 47\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{376}(1,·)$, $\chi_{376}(277,·)$, $\chi_{376}(81,·)$, $\chi_{376}(9,·)$, $\chi_{376}(269,·)$, $\chi_{376}(337,·)$, $\chi_{376}(365,·)$, $\chi_{376}(145,·)$, $\chi_{376}(149,·)$, $\chi_{376}(89,·)$, $\chi_{376}(25,·)$, $\chi_{376}(285,·)$, $\chi_{376}(341,·)$, $\chi_{376}(289,·)$, $\chi_{376}(37,·)$, $\chi_{376}(49,·)$, $\chi_{376}(169,·)$, $\chi_{376}(173,·)$, $\chi_{376}(157,·)$, $\chi_{376}(177,·)$, $\chi_{376}(309,·)$, $\chi_{376}(61,·)$, $\chi_{376}(53,·)$, $\chi_{376}(65,·)$, $\chi_{376}(197,·)$, $\chi_{376}(97,·)$, $\chi_{376}(333,·)$, $\chi_{376}(205,·)$, $\chi_{376}(209,·)$, $\chi_{376}(213,·)$, $\chi_{376}(121,·)$, $\chi_{376}(345,·)$, $\chi_{376}(101,·)$, $\chi_{376}(165,·)$, $\chi_{376}(353,·)$, $\chi_{376}(357,·)$, $\chi_{376}(17,·)$, $\chi_{376}(361,·)$, $\chi_{376}(225,·)$, $\chi_{376}(237,·)$, $\chi_{376}(189,·)$, $\chi_{376}(241,·)$, $\chi_{376}(153,·)$, $\chi_{376}(249,·)$, $\chi_{376}(253,·)$, $\chi_{376}(21,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$, $\frac{1}{32768} a^{30}$, $\frac{1}{32768} a^{31}$, $\frac{1}{65536} a^{32}$, $\frac{1}{65536} a^{33}$, $\frac{1}{131072} a^{34}$, $\frac{1}{131072} a^{35}$, $\frac{1}{262144} a^{36}$, $\frac{1}{262144} a^{37}$, $\frac{1}{524288} a^{38}$, $\frac{1}{524288} a^{39}$, $\frac{1}{1048576} a^{40}$, $\frac{1}{1048576} a^{41}$, $\frac{1}{2097152} a^{42}$, $\frac{1}{2097152} a^{43}$, $\frac{1}{4194304} a^{44}$, $\frac{1}{4194304} a^{45}$
Not computed
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $45$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Not computed
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | Not computed
|
|
$C_{46}$ (as 46T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$46$ |
R |
$46$ |
$46$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])