Properties

Label 46.46.1652694058...3989.1
Degree $46$
Signature $[46, 0]$
Discriminant $3^{23}\cdot 47^{45}$
Root discriminant $74.87$
Ramified primes $3, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -48, 48, 4276, -4276, -114634, 114634, 1431196, -1431196, -10162529, 10162529, 45908941, -45908941, -141714824, 141714824, 313942891, -313942891, -516962354, 516962354, 649220446, -649220446, -633580634, 633580634, 486968926, -486968926, -297415766, 297415766, 145057650, -145057650, -56562010, 56562010, 17581994, -17581994, -4324189, 4324189, 830207, -830207, -121731, 121731, 13159, -13159, -988, 988, 46, -46, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 - 46*x^44 + 46*x^43 + 988*x^42 - 988*x^41 - 13159*x^40 + 13159*x^39 + 121731*x^38 - 121731*x^37 - 830207*x^36 + 830207*x^35 + 4324189*x^34 - 4324189*x^33 - 17581994*x^32 + 17581994*x^31 + 56562010*x^30 - 56562010*x^29 - 145057650*x^28 + 145057650*x^27 + 297415766*x^26 - 297415766*x^25 - 486968926*x^24 + 486968926*x^23 + 633580634*x^22 - 633580634*x^21 - 649220446*x^20 + 649220446*x^19 + 516962354*x^18 - 516962354*x^17 - 313942891*x^16 + 313942891*x^15 + 141714824*x^14 - 141714824*x^13 - 45908941*x^12 + 45908941*x^11 + 10162529*x^10 - 10162529*x^9 - 1431196*x^8 + 1431196*x^7 + 114634*x^6 - 114634*x^5 - 4276*x^4 + 4276*x^3 + 48*x^2 - 48*x + 1)
 
gp: K = bnfinit(x^46 - x^45 - 46*x^44 + 46*x^43 + 988*x^42 - 988*x^41 - 13159*x^40 + 13159*x^39 + 121731*x^38 - 121731*x^37 - 830207*x^36 + 830207*x^35 + 4324189*x^34 - 4324189*x^33 - 17581994*x^32 + 17581994*x^31 + 56562010*x^30 - 56562010*x^29 - 145057650*x^28 + 145057650*x^27 + 297415766*x^26 - 297415766*x^25 - 486968926*x^24 + 486968926*x^23 + 633580634*x^22 - 633580634*x^21 - 649220446*x^20 + 649220446*x^19 + 516962354*x^18 - 516962354*x^17 - 313942891*x^16 + 313942891*x^15 + 141714824*x^14 - 141714824*x^13 - 45908941*x^12 + 45908941*x^11 + 10162529*x^10 - 10162529*x^9 - 1431196*x^8 + 1431196*x^7 + 114634*x^6 - 114634*x^5 - 4276*x^4 + 4276*x^3 + 48*x^2 - 48*x + 1, 1)
 

Normalized defining polynomial

\( x^{46} - x^{45} - 46 x^{44} + 46 x^{43} + 988 x^{42} - 988 x^{41} - 13159 x^{40} + 13159 x^{39} + 121731 x^{38} - 121731 x^{37} - 830207 x^{36} + 830207 x^{35} + 4324189 x^{34} - 4324189 x^{33} - 17581994 x^{32} + 17581994 x^{31} + 56562010 x^{30} - 56562010 x^{29} - 145057650 x^{28} + 145057650 x^{27} + 297415766 x^{26} - 297415766 x^{25} - 486968926 x^{24} + 486968926 x^{23} + 633580634 x^{22} - 633580634 x^{21} - 649220446 x^{20} + 649220446 x^{19} + 516962354 x^{18} - 516962354 x^{17} - 313942891 x^{16} + 313942891 x^{15} + 141714824 x^{14} - 141714824 x^{13} - 45908941 x^{12} + 45908941 x^{11} + 10162529 x^{10} - 10162529 x^{9} - 1431196 x^{8} + 1431196 x^{7} + 114634 x^{6} - 114634 x^{5} - 4276 x^{4} + 4276 x^{3} + 48 x^{2} - 48 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $46$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[46, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(165269405800315006446654642733283089940652236420810887453559572571427563258244528313989=3^{23}\cdot 47^{45}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $74.87$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(141=3\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{141}(1,·)$, $\chi_{141}(130,·)$, $\chi_{141}(4,·)$, $\chi_{141}(5,·)$, $\chi_{141}(134,·)$, $\chi_{141}(7,·)$, $\chi_{141}(136,·)$, $\chi_{141}(137,·)$, $\chi_{141}(11,·)$, $\chi_{141}(140,·)$, $\chi_{141}(16,·)$, $\chi_{141}(20,·)$, $\chi_{141}(23,·)$, $\chi_{141}(25,·)$, $\chi_{141}(26,·)$, $\chi_{141}(28,·)$, $\chi_{141}(29,·)$, $\chi_{141}(34,·)$, $\chi_{141}(35,·)$, $\chi_{141}(37,·)$, $\chi_{141}(38,·)$, $\chi_{141}(41,·)$, $\chi_{141}(44,·)$, $\chi_{141}(49,·)$, $\chi_{141}(55,·)$, $\chi_{141}(61,·)$, $\chi_{141}(62,·)$, $\chi_{141}(64,·)$, $\chi_{141}(77,·)$, $\chi_{141}(79,·)$, $\chi_{141}(80,·)$, $\chi_{141}(86,·)$, $\chi_{141}(92,·)$, $\chi_{141}(97,·)$, $\chi_{141}(100,·)$, $\chi_{141}(103,·)$, $\chi_{141}(104,·)$, $\chi_{141}(106,·)$, $\chi_{141}(107,·)$, $\chi_{141}(112,·)$, $\chi_{141}(113,·)$, $\chi_{141}(115,·)$, $\chi_{141}(116,·)$, $\chi_{141}(118,·)$, $\chi_{141}(121,·)$, $\chi_{141}(125,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $45$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 45504514750422600000000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{46}$ (as 46T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$ is not computed

Intermediate fields

\(\Q(\sqrt{141}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $46$ R $23^{2}$ $23^{2}$ $23^{2}$ $46$ $46$ $46$ $23^{2}$ $23^{2}$ $46$ $23^{2}$ $23^{2}$ $46$ R $46$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
47Data not computed