Properties

Label 46.46.1472629538...0000.1
Degree $46$
Signature $[46, 0]$
Discriminant $2^{46}\cdot 5^{23}\cdot 47^{45}$
Root discriminant $193.31$
Ramified primes $2, 5, 47$
Class number Not computed
Class group Not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-560283660888671875, 0, 10309219360351562500, 0, -56700706481933593750, 0, 147421836853027343750, 0, -221132755279541015625, 0, 213895683288574218750, 0, -143145572662353515625, 0, 69527849578857421875, 0, -25357215728759765625, 0, 7117814941406250000, 0, -1565919287109375000, 0, 273571669921875000, 0, -38300033789062500, 0, 4321029453125000, 0, -393788398437500, 0, 28962501562500, 0, -1711420546875, 0, 80537437500, 0, -2974806250, 0, 84306250, 0, -1768375, 0, 25850, 0, -235, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 235*x^44 + 25850*x^42 - 1768375*x^40 + 84306250*x^38 - 2974806250*x^36 + 80537437500*x^34 - 1711420546875*x^32 + 28962501562500*x^30 - 393788398437500*x^28 + 4321029453125000*x^26 - 38300033789062500*x^24 + 273571669921875000*x^22 - 1565919287109375000*x^20 + 7117814941406250000*x^18 - 25357215728759765625*x^16 + 69527849578857421875*x^14 - 143145572662353515625*x^12 + 213895683288574218750*x^10 - 221132755279541015625*x^8 + 147421836853027343750*x^6 - 56700706481933593750*x^4 + 10309219360351562500*x^2 - 560283660888671875)
 
gp: K = bnfinit(x^46 - 235*x^44 + 25850*x^42 - 1768375*x^40 + 84306250*x^38 - 2974806250*x^36 + 80537437500*x^34 - 1711420546875*x^32 + 28962501562500*x^30 - 393788398437500*x^28 + 4321029453125000*x^26 - 38300033789062500*x^24 + 273571669921875000*x^22 - 1565919287109375000*x^20 + 7117814941406250000*x^18 - 25357215728759765625*x^16 + 69527849578857421875*x^14 - 143145572662353515625*x^12 + 213895683288574218750*x^10 - 221132755279541015625*x^8 + 147421836853027343750*x^6 - 56700706481933593750*x^4 + 10309219360351562500*x^2 - 560283660888671875, 1)
 

Normalized defining polynomial

\( x^{46} - 235 x^{44} + 25850 x^{42} - 1768375 x^{40} + 84306250 x^{38} - 2974806250 x^{36} + 80537437500 x^{34} - 1711420546875 x^{32} + 28962501562500 x^{30} - 393788398437500 x^{28} + 4321029453125000 x^{26} - 38300033789062500 x^{24} + 273571669921875000 x^{22} - 1565919287109375000 x^{20} + 7117814941406250000 x^{18} - 25357215728759765625 x^{16} + 69527849578857421875 x^{14} - 143145572662353515625 x^{12} + 213895683288574218750 x^{10} - 221132755279541015625 x^{8} + 147421836853027343750 x^{6} - 56700706481933593750 x^{4} + 10309219360351562500 x^{2} - 560283660888671875 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $46$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[46, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1472629538247713057115908841446795301275975338441612336549649339098854081833834905600000000000000000000000=2^{46}\cdot 5^{23}\cdot 47^{45}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $193.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(940=2^{2}\cdot 5\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{940}(1,·)$, $\chi_{940}(901,·)$, $\chi_{940}(521,·)$, $\chi_{940}(139,·)$, $\chi_{940}(399,·)$, $\chi_{940}(401,·)$, $\chi_{940}(19,·)$, $\chi_{940}(21,·)$, $\chi_{940}(279,·)$, $\chi_{940}(921,·)$, $\chi_{940}(539,·)$, $\chi_{940}(541,·)$, $\chi_{940}(801,·)$, $\chi_{940}(419,·)$, $\chi_{940}(39,·)$, $\chi_{940}(939,·)$, $\chi_{940}(179,·)$, $\chi_{940}(121,·)$, $\chi_{940}(441,·)$, $\chi_{940}(699,·)$, $\chi_{940}(61,·)$, $\chi_{940}(579,·)$, $\chi_{940}(581,·)$, $\chi_{940}(839,·)$, $\chi_{940}(841,·)$, $\chi_{940}(859,·)$, $\chi_{940}(721,·)$, $\chi_{940}(339,·)$, $\chi_{940}(919,·)$, $\chi_{940}(341,·)$, $\chi_{940}(599,·)$, $\chi_{940}(601,·)$, $\chi_{940}(219,·)$, $\chi_{940}(199,·)$, $\chi_{940}(101,·)$, $\chi_{940}(99,·)$, $\chi_{940}(741,·)$, $\chi_{940}(81,·)$, $\chi_{940}(361,·)$, $\chi_{940}(359,·)$, $\chi_{940}(879,·)$, $\chi_{940}(241,·)$, $\chi_{940}(499,·)$, $\chi_{940}(761,·)$, $\chi_{940}(819,·)$, $\chi_{940}(661,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{625} a^{8}$, $\frac{1}{625} a^{9}$, $\frac{1}{3125} a^{10}$, $\frac{1}{3125} a^{11}$, $\frac{1}{15625} a^{12}$, $\frac{1}{15625} a^{13}$, $\frac{1}{78125} a^{14}$, $\frac{1}{78125} a^{15}$, $\frac{1}{390625} a^{16}$, $\frac{1}{390625} a^{17}$, $\frac{1}{1953125} a^{18}$, $\frac{1}{1953125} a^{19}$, $\frac{1}{9765625} a^{20}$, $\frac{1}{9765625} a^{21}$, $\frac{1}{48828125} a^{22}$, $\frac{1}{48828125} a^{23}$, $\frac{1}{244140625} a^{24}$, $\frac{1}{244140625} a^{25}$, $\frac{1}{1220703125} a^{26}$, $\frac{1}{1220703125} a^{27}$, $\frac{1}{6103515625} a^{28}$, $\frac{1}{6103515625} a^{29}$, $\frac{1}{30517578125} a^{30}$, $\frac{1}{30517578125} a^{31}$, $\frac{1}{152587890625} a^{32}$, $\frac{1}{152587890625} a^{33}$, $\frac{1}{762939453125} a^{34}$, $\frac{1}{762939453125} a^{35}$, $\frac{1}{3814697265625} a^{36}$, $\frac{1}{3814697265625} a^{37}$, $\frac{1}{19073486328125} a^{38}$, $\frac{1}{19073486328125} a^{39}$, $\frac{1}{95367431640625} a^{40}$, $\frac{1}{95367431640625} a^{41}$, $\frac{1}{476837158203125} a^{42}$, $\frac{1}{476837158203125} a^{43}$, $\frac{1}{2384185791015625} a^{44}$, $\frac{1}{2384185791015625} a^{45}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $45$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{46}$ (as 46T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$ is not computed

Intermediate fields

\(\Q(\sqrt{235}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $23^{2}$ R $23^{2}$ $23^{2}$ $23^{2}$ $46$ $23^{2}$ $46$ $46$ $23^{2}$ $46$ $46$ $46$ R $46$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
47Data not computed