magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-560283660888671875, 0, 10309219360351562500, 0, -56700706481933593750, 0, 147421836853027343750, 0, -221132755279541015625, 0, 213895683288574218750, 0, -143145572662353515625, 0, 69527849578857421875, 0, -25357215728759765625, 0, 7117814941406250000, 0, -1565919287109375000, 0, 273571669921875000, 0, -38300033789062500, 0, 4321029453125000, 0, -393788398437500, 0, 28962501562500, 0, -1711420546875, 0, 80537437500, 0, -2974806250, 0, 84306250, 0, -1768375, 0, 25850, 0, -235, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 235*x^44 + 25850*x^42 - 1768375*x^40 + 84306250*x^38 - 2974806250*x^36 + 80537437500*x^34 - 1711420546875*x^32 + 28962501562500*x^30 - 393788398437500*x^28 + 4321029453125000*x^26 - 38300033789062500*x^24 + 273571669921875000*x^22 - 1565919287109375000*x^20 + 7117814941406250000*x^18 - 25357215728759765625*x^16 + 69527849578857421875*x^14 - 143145572662353515625*x^12 + 213895683288574218750*x^10 - 221132755279541015625*x^8 + 147421836853027343750*x^6 - 56700706481933593750*x^4 + 10309219360351562500*x^2 - 560283660888671875)
gp: K = bnfinit(x^46 - 235*x^44 + 25850*x^42 - 1768375*x^40 + 84306250*x^38 - 2974806250*x^36 + 80537437500*x^34 - 1711420546875*x^32 + 28962501562500*x^30 - 393788398437500*x^28 + 4321029453125000*x^26 - 38300033789062500*x^24 + 273571669921875000*x^22 - 1565919287109375000*x^20 + 7117814941406250000*x^18 - 25357215728759765625*x^16 + 69527849578857421875*x^14 - 143145572662353515625*x^12 + 213895683288574218750*x^10 - 221132755279541015625*x^8 + 147421836853027343750*x^6 - 56700706481933593750*x^4 + 10309219360351562500*x^2 - 560283660888671875, 1)
\( x^{46} - 235 x^{44} + 25850 x^{42} - 1768375 x^{40} + 84306250 x^{38} - 2974806250 x^{36} + 80537437500 x^{34} - 1711420546875 x^{32} + 28962501562500 x^{30} - 393788398437500 x^{28} + 4321029453125000 x^{26} - 38300033789062500 x^{24} + 273571669921875000 x^{22} - 1565919287109375000 x^{20} + 7117814941406250000 x^{18} - 25357215728759765625 x^{16} + 69527849578857421875 x^{14} - 143145572662353515625 x^{12} + 213895683288574218750 x^{10} - 221132755279541015625 x^{8} + 147421836853027343750 x^{6} - 56700706481933593750 x^{4} + 10309219360351562500 x^{2} - 560283660888671875 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $46$ |
|
| Signature: | | $[46, 0]$ |
|
| Discriminant: | | \(1472629538247713057115908841446795301275975338441612336549649339098854081833834905600000000000000000000000=2^{46}\cdot 5^{23}\cdot 47^{45}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $193.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(940=2^{2}\cdot 5\cdot 47\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{940}(1,·)$, $\chi_{940}(901,·)$, $\chi_{940}(521,·)$, $\chi_{940}(139,·)$, $\chi_{940}(399,·)$, $\chi_{940}(401,·)$, $\chi_{940}(19,·)$, $\chi_{940}(21,·)$, $\chi_{940}(279,·)$, $\chi_{940}(921,·)$, $\chi_{940}(539,·)$, $\chi_{940}(541,·)$, $\chi_{940}(801,·)$, $\chi_{940}(419,·)$, $\chi_{940}(39,·)$, $\chi_{940}(939,·)$, $\chi_{940}(179,·)$, $\chi_{940}(121,·)$, $\chi_{940}(441,·)$, $\chi_{940}(699,·)$, $\chi_{940}(61,·)$, $\chi_{940}(579,·)$, $\chi_{940}(581,·)$, $\chi_{940}(839,·)$, $\chi_{940}(841,·)$, $\chi_{940}(859,·)$, $\chi_{940}(721,·)$, $\chi_{940}(339,·)$, $\chi_{940}(919,·)$, $\chi_{940}(341,·)$, $\chi_{940}(599,·)$, $\chi_{940}(601,·)$, $\chi_{940}(219,·)$, $\chi_{940}(199,·)$, $\chi_{940}(101,·)$, $\chi_{940}(99,·)$, $\chi_{940}(741,·)$, $\chi_{940}(81,·)$, $\chi_{940}(361,·)$, $\chi_{940}(359,·)$, $\chi_{940}(879,·)$, $\chi_{940}(241,·)$, $\chi_{940}(499,·)$, $\chi_{940}(761,·)$, $\chi_{940}(819,·)$, $\chi_{940}(661,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{625} a^{8}$, $\frac{1}{625} a^{9}$, $\frac{1}{3125} a^{10}$, $\frac{1}{3125} a^{11}$, $\frac{1}{15625} a^{12}$, $\frac{1}{15625} a^{13}$, $\frac{1}{78125} a^{14}$, $\frac{1}{78125} a^{15}$, $\frac{1}{390625} a^{16}$, $\frac{1}{390625} a^{17}$, $\frac{1}{1953125} a^{18}$, $\frac{1}{1953125} a^{19}$, $\frac{1}{9765625} a^{20}$, $\frac{1}{9765625} a^{21}$, $\frac{1}{48828125} a^{22}$, $\frac{1}{48828125} a^{23}$, $\frac{1}{244140625} a^{24}$, $\frac{1}{244140625} a^{25}$, $\frac{1}{1220703125} a^{26}$, $\frac{1}{1220703125} a^{27}$, $\frac{1}{6103515625} a^{28}$, $\frac{1}{6103515625} a^{29}$, $\frac{1}{30517578125} a^{30}$, $\frac{1}{30517578125} a^{31}$, $\frac{1}{152587890625} a^{32}$, $\frac{1}{152587890625} a^{33}$, $\frac{1}{762939453125} a^{34}$, $\frac{1}{762939453125} a^{35}$, $\frac{1}{3814697265625} a^{36}$, $\frac{1}{3814697265625} a^{37}$, $\frac{1}{19073486328125} a^{38}$, $\frac{1}{19073486328125} a^{39}$, $\frac{1}{95367431640625} a^{40}$, $\frac{1}{95367431640625} a^{41}$, $\frac{1}{476837158203125} a^{42}$, $\frac{1}{476837158203125} a^{43}$, $\frac{1}{2384185791015625} a^{44}$, $\frac{1}{2384185791015625} a^{45}$
Not computed
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $45$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Not computed
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | Not computed
|
|
$C_{46}$ (as 46T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$23^{2}$ |
R |
$23^{2}$ |
$23^{2}$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$46$ |
$46$ |
R |
$46$ |
$46$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])