magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-47, 0, 4324, 0, -118910, 0, 1545830, 0, -11593725, 0, 56071470, 0, -187623765, 0, 455657715, 0, -830905245, 0, 1166182800, 0, -1282801080, 0, 1120549560, 0, -784384692, 0, 442473416, 0, -201619660, 0, 74144004, 0, -21906183, 0, 5154396, 0, -951938, 0, 134890, 0, -14147, 0, 1034, 0, -47, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 47*x^44 + 1034*x^42 - 14147*x^40 + 134890*x^38 - 951938*x^36 + 5154396*x^34 - 21906183*x^32 + 74144004*x^30 - 201619660*x^28 + 442473416*x^26 - 784384692*x^24 + 1120549560*x^22 - 1282801080*x^20 + 1166182800*x^18 - 830905245*x^16 + 455657715*x^14 - 187623765*x^12 + 56071470*x^10 - 11593725*x^8 + 1545830*x^6 - 118910*x^4 + 4324*x^2 - 47)
gp: K = bnfinit(x^46 - 47*x^44 + 1034*x^42 - 14147*x^40 + 134890*x^38 - 951938*x^36 + 5154396*x^34 - 21906183*x^32 + 74144004*x^30 - 201619660*x^28 + 442473416*x^26 - 784384692*x^24 + 1120549560*x^22 - 1282801080*x^20 + 1166182800*x^18 - 830905245*x^16 + 455657715*x^14 - 187623765*x^12 + 56071470*x^10 - 11593725*x^8 + 1545830*x^6 - 118910*x^4 + 4324*x^2 - 47, 1)
\( x^{46} - 47 x^{44} + 1034 x^{42} - 14147 x^{40} + 134890 x^{38} - 951938 x^{36} + 5154396 x^{34} - 21906183 x^{32} + 74144004 x^{30} - 201619660 x^{28} + 442473416 x^{26} - 784384692 x^{24} + 1120549560 x^{22} - 1282801080 x^{20} + 1166182800 x^{18} - 830905245 x^{16} + 455657715 x^{14} - 187623765 x^{12} + 56071470 x^{10} - 11593725 x^{8} + 1545830 x^{6} - 118910 x^{4} + 4324 x^{2} - 47 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $46$ |
|
| Signature: | | $[46, 0]$ |
|
| Discriminant: | | \(123533119255810717326269698346313186386460569318540167792790808431593601417039621597954048=2^{46}\cdot 47^{45}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $86.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(188=2^{2}\cdot 47\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{188}(1,·)$, $\chi_{188}(43,·)$, $\chi_{188}(135,·)$, $\chi_{188}(9,·)$, $\chi_{188}(11,·)$, $\chi_{188}(15,·)$, $\chi_{188}(17,·)$, $\chi_{188}(19,·)$, $\chi_{188}(149,·)$, $\chi_{188}(23,·)$, $\chi_{188}(127,·)$, $\chi_{188}(25,·)$, $\chi_{188}(157,·)$, $\chi_{188}(31,·)$, $\chi_{188}(35,·)$, $\chi_{188}(37,·)$, $\chi_{188}(167,·)$, $\chi_{188}(169,·)$, $\chi_{188}(171,·)$, $\chi_{188}(173,·)$, $\chi_{188}(49,·)$, $\chi_{188}(179,·)$, $\chi_{188}(53,·)$, $\chi_{188}(187,·)$, $\chi_{188}(151,·)$, $\chi_{188}(61,·)$, $\chi_{188}(65,·)$, $\chi_{188}(67,·)$, $\chi_{188}(177,·)$, $\chi_{188}(81,·)$, $\chi_{188}(163,·)$, $\chi_{188}(139,·)$, $\chi_{188}(87,·)$, $\chi_{188}(89,·)$, $\chi_{188}(91,·)$, $\chi_{188}(165,·)$, $\chi_{188}(97,·)$, $\chi_{188}(99,·)$, $\chi_{188}(101,·)$, $\chi_{188}(145,·)$, $\chi_{188}(107,·)$, $\chi_{188}(153,·)$, $\chi_{188}(121,·)$, $\chi_{188}(123,·)$, $\chi_{188}(39,·)$, $\chi_{188}(21,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$
Not computed
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $45$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Not computed
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | Not computed
|
|
$C_{46}$ (as 46T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$46$ |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$23^{2}$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
R |
$23^{2}$ |
$46$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])