magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-394264576, 0, 18136170496, 0, -249372344320, 0, 1620920238080, 0, -6078450892800, 0, 14698799431680, 0, -24592222126080, 0, 29861984010240, 0, -27227103068160, 0, 19106738995200, 0, -10508706447360, 0, 4589770997760, 0, -1606419849216, 0, 453092777984, 0, -103229265920, 0, 18980865024, 0, -2803991424, 0, 329881344, 0, -30462016, 0, 2158240, 0, -113176, 0, 4136, 0, -94, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 94*x^44 + 4136*x^42 - 113176*x^40 + 2158240*x^38 - 30462016*x^36 + 329881344*x^34 - 2803991424*x^32 + 18980865024*x^30 - 103229265920*x^28 + 453092777984*x^26 - 1606419849216*x^24 + 4589770997760*x^22 - 10508706447360*x^20 + 19106738995200*x^18 - 27227103068160*x^16 + 29861984010240*x^14 - 24592222126080*x^12 + 14698799431680*x^10 - 6078450892800*x^8 + 1620920238080*x^6 - 249372344320*x^4 + 18136170496*x^2 - 394264576)
gp: K = bnfinit(x^46 - 94*x^44 + 4136*x^42 - 113176*x^40 + 2158240*x^38 - 30462016*x^36 + 329881344*x^34 - 2803991424*x^32 + 18980865024*x^30 - 103229265920*x^28 + 453092777984*x^26 - 1606419849216*x^24 + 4589770997760*x^22 - 10508706447360*x^20 + 19106738995200*x^18 - 27227103068160*x^16 + 29861984010240*x^14 - 24592222126080*x^12 + 14698799431680*x^10 - 6078450892800*x^8 + 1620920238080*x^6 - 249372344320*x^4 + 18136170496*x^2 - 394264576, 1)
\( x^{46} - 94 x^{44} + 4136 x^{42} - 113176 x^{40} + 2158240 x^{38} - 30462016 x^{36} + 329881344 x^{34} - 2803991424 x^{32} + 18980865024 x^{30} - 103229265920 x^{28} + 453092777984 x^{26} - 1606419849216 x^{24} + 4589770997760 x^{22} - 10508706447360 x^{20} + 19106738995200 x^{18} - 27227103068160 x^{16} + 29861984010240 x^{14} - 24592222126080 x^{12} + 14698799431680 x^{10} - 6078450892800 x^{8} + 1620920238080 x^{6} - 249372344320 x^{4} + 18136170496 x^{2} - 394264576 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $46$ |
|
| Signature: | | $[46, 0]$ |
|
| Discriminant: | | \(1036270912454247829848884601705469565826954223470060599867947317935733537595789906053570110685184=2^{69}\cdot 47^{45}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $122.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(376=2^{3}\cdot 47\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{376}(1,·)$, $\chi_{376}(43,·)$, $\chi_{376}(97,·)$, $\chi_{376}(81,·)$, $\chi_{376}(145,·)$, $\chi_{376}(9,·)$, $\chi_{376}(11,·)$, $\chi_{376}(17,·)$, $\chi_{376}(19,·)$, $\chi_{376}(89,·)$, $\chi_{376}(25,·)$, $\chi_{376}(289,·)$, $\chi_{376}(35,·)$, $\chi_{376}(49,·)$, $\chi_{376}(169,·)$, $\chi_{376}(171,·)$, $\chi_{376}(99,·)$, $\chi_{376}(177,·)$, $\chi_{376}(91,·)$, $\chi_{376}(179,·)$, $\chi_{376}(315,·)$, $\chi_{376}(65,·)$, $\chi_{376}(67,·)$, $\chi_{376}(353,·)$, $\chi_{376}(275,·)$, $\chi_{376}(339,·)$, $\chi_{376}(203,·)$, $\chi_{376}(209,·)$, $\chi_{376}(163,·)$, $\chi_{376}(139,·)$, $\chi_{376}(121,·)$, $\chi_{376}(355,·)$, $\chi_{376}(345,·)$, $\chi_{376}(219,·)$, $\chi_{376}(225,·)$, $\chi_{376}(227,·)$, $\chi_{376}(337,·)$, $\chi_{376}(361,·)$, $\chi_{376}(323,·)$, $\chi_{376}(107,·)$, $\chi_{376}(241,·)$, $\chi_{376}(211,·)$, $\chi_{376}(187,·)$, $\chi_{376}(153,·)$, $\chi_{376}(249,·)$, $\chi_{376}(123,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$, $\frac{1}{32768} a^{30}$, $\frac{1}{32768} a^{31}$, $\frac{1}{65536} a^{32}$, $\frac{1}{65536} a^{33}$, $\frac{1}{131072} a^{34}$, $\frac{1}{131072} a^{35}$, $\frac{1}{262144} a^{36}$, $\frac{1}{262144} a^{37}$, $\frac{1}{524288} a^{38}$, $\frac{1}{524288} a^{39}$, $\frac{1}{1048576} a^{40}$, $\frac{1}{1048576} a^{41}$, $\frac{1}{2097152} a^{42}$, $\frac{1}{2097152} a^{43}$, $\frac{1}{4194304} a^{44}$, $\frac{1}{4194304} a^{45}$
Not computed
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $45$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Not computed
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | Not computed
|
|
$C_{46}$ (as 46T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$23^{2}$ |
$23^{2}$ |
$46$ |
$46$ |
$23^{2}$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$23^{2}$ |
$23^{2}$ |
$46$ |
$46$ |
$46$ |
R |
$46$ |
$23^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])