Normalized defining polynomial
\( x^{46} - 3 x - 2 \)
Invariants
| Degree: | $46$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 22]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2198573809976436140308455840261067288915834777310563784825797656919642572984790479136920131622197=7\cdot 47\cdot 4697389783\cdot 17089161961\cdot 2184815465401\cdot 733058611398596401\cdot 51977373060652904686863524314133359876448011\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 47, 4697389783, 17089161961, 2184815465401, 733058611398596401, 51977373060652904686863524314133359876448011$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$
Class group and class number
Not computed
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{46}$ (as 46T56):
| A non-solvable group of order 5502622159812088949850305428800254892961651752960000000000 |
| The 105558 conjugacy class representatives for $S_{46}$ are not computed |
| Character table for $S_{46}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | $22^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $22{,}\,18{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | $17{,}\,15{,}\,{\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $34{,}\,{\href{/LocalNumberField/13.12.0.1}{12} }$ | $22{,}\,15{,}\,{\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $32{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $26{,}\,{\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }$ | $41{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $35{,}\,{\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $40{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $26{,}\,{\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }{,}\,{\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | R | $45{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $43{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.6.0.1 | $x^{6} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 47.12.0.1 | $x^{12} + x^{2} - x + 41$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 47.12.0.1 | $x^{12} + x^{2} - x + 41$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 4697389783 | Data not computed | ||||||
| 17089161961 | Data not computed | ||||||
| 2184815465401 | Data not computed | ||||||
| 733058611398596401 | Data not computed | ||||||
| 51977373060652904686863524314133359876448011 | Data not computed | ||||||