Normalized defining polynomial
\( x^{46} - 4 x - 1 \)
Invariants
| Degree: | $46$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 22]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17455927136175424851782795394947398572755562200353461405376235401663658494141675420261489=7\cdot 324901\cdot 64588348141\cdot 216832421280667\cdot 548044010068642855511781906206803130849250332500887931141\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 324901, 64588348141, 216832421280667, 548044010068642855511781906206803130849250332500887931141$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{2} a^{23} - \frac{1}{2}$, $\frac{1}{2} a^{24} - \frac{1}{2} a$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{30} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{31} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{32} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{33} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{34} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{35} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{36} - \frac{1}{2} a^{13}$, $\frac{1}{2} a^{37} - \frac{1}{2} a^{14}$, $\frac{1}{2} a^{38} - \frac{1}{2} a^{15}$, $\frac{1}{2} a^{39} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{40} - \frac{1}{2} a^{17}$, $\frac{1}{2} a^{41} - \frac{1}{2} a^{18}$, $\frac{1}{2} a^{42} - \frac{1}{2} a^{19}$, $\frac{1}{2} a^{43} - \frac{1}{2} a^{20}$, $\frac{1}{2} a^{44} - \frac{1}{2} a^{21}$, $\frac{1}{2} a^{45} - \frac{1}{2} a^{22}$
Class group and class number
Not computed
Unit group
| Rank: | $23$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{46}$ (as 46T56):
| A non-solvable group of order 5502622159812088949850305428800254892961651752960000000000 |
| The 105558 conjugacy class representatives for $S_{46}$ are not computed |
| Character table for $S_{46}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22{,}\,{\href{/LocalNumberField/2.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | $36{,}\,{\href{/LocalNumberField/3.10.0.1}{10} }$ | $26{,}\,{\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | $26{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $27{,}\,{\href{/LocalNumberField/13.11.0.1}{11} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $22{,}\,15{,}\,{\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $20{,}\,19{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $26{,}\,{\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }$ | $43{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/31.13.0.1}{13} }{,}\,{\href{/LocalNumberField/31.11.0.1}{11} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $38{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $25{,}\,16{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $28{,}\,{\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | $44{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | $21{,}\,15{,}\,{\href{/LocalNumberField/53.10.0.1}{10} }$ | $28{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 324901 | Data not computed | ||||||
| 64588348141 | Data not computed | ||||||
| 216832421280667 | Data not computed | ||||||
| 548044010068642855511781906206803130849250332500887931141 | Data not computed | ||||||