Properties

Label 46.0.73299449025...4779.1
Degree $46$
Signature $[0, 23]$
Discriminant $-\,13^{23}\cdot 47^{45}$
Root discriminant $155.85$
Ramified primes $13, 47$
Class number Not computed
Class group Not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![106127132605244053, -106122707875839184, 106122707875839184, -105987016174089868, 105987016174089868, -104743175574721138, 104743175574721138, -99353199644123308, 99353199644123308, -85878259817628733, 85878259817628733, -64155023491279903, 64155023491279903, -39925259896506208, 39925259896506208, -20310689367403693, 20310689367403693, -8388107281086478, 8388107281086478, -2810291100353278, 2810291100353278, -765091834084438, 765091834084438, -169585855368478, 169585855368478, -30634460334754, 30634460334754, -4506847593370, 4506847593370, -538367825590, 538367825590, -51909015346, 51909015346, -4000193125, 4000193125, -242638441, 242638441, -11317507, 11317507, -391417, 391417, -9448, 9448, -142, 142, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 + 142*x^44 - 142*x^43 + 9448*x^42 - 9448*x^41 + 391417*x^40 - 391417*x^39 + 11317507*x^38 - 11317507*x^37 + 242638441*x^36 - 242638441*x^35 + 4000193125*x^34 - 4000193125*x^33 + 51909015346*x^32 - 51909015346*x^31 + 538367825590*x^30 - 538367825590*x^29 + 4506847593370*x^28 - 4506847593370*x^27 + 30634460334754*x^26 - 30634460334754*x^25 + 169585855368478*x^24 - 169585855368478*x^23 + 765091834084438*x^22 - 765091834084438*x^21 + 2810291100353278*x^20 - 2810291100353278*x^19 + 8388107281086478*x^18 - 8388107281086478*x^17 + 20310689367403693*x^16 - 20310689367403693*x^15 + 39925259896506208*x^14 - 39925259896506208*x^13 + 64155023491279903*x^12 - 64155023491279903*x^11 + 85878259817628733*x^10 - 85878259817628733*x^9 + 99353199644123308*x^8 - 99353199644123308*x^7 + 104743175574721138*x^6 - 104743175574721138*x^5 + 105987016174089868*x^4 - 105987016174089868*x^3 + 106122707875839184*x^2 - 106122707875839184*x + 106127132605244053)
 
gp: K = bnfinit(x^46 - x^45 + 142*x^44 - 142*x^43 + 9448*x^42 - 9448*x^41 + 391417*x^40 - 391417*x^39 + 11317507*x^38 - 11317507*x^37 + 242638441*x^36 - 242638441*x^35 + 4000193125*x^34 - 4000193125*x^33 + 51909015346*x^32 - 51909015346*x^31 + 538367825590*x^30 - 538367825590*x^29 + 4506847593370*x^28 - 4506847593370*x^27 + 30634460334754*x^26 - 30634460334754*x^25 + 169585855368478*x^24 - 169585855368478*x^23 + 765091834084438*x^22 - 765091834084438*x^21 + 2810291100353278*x^20 - 2810291100353278*x^19 + 8388107281086478*x^18 - 8388107281086478*x^17 + 20310689367403693*x^16 - 20310689367403693*x^15 + 39925259896506208*x^14 - 39925259896506208*x^13 + 64155023491279903*x^12 - 64155023491279903*x^11 + 85878259817628733*x^10 - 85878259817628733*x^9 + 99353199644123308*x^8 - 99353199644123308*x^7 + 104743175574721138*x^6 - 104743175574721138*x^5 + 105987016174089868*x^4 - 105987016174089868*x^3 + 106122707875839184*x^2 - 106122707875839184*x + 106127132605244053, 1)
 

Normalized defining polynomial

\( x^{46} - x^{45} + 142 x^{44} - 142 x^{43} + 9448 x^{42} - 9448 x^{41} + 391417 x^{40} - 391417 x^{39} + 11317507 x^{38} - 11317507 x^{37} + 242638441 x^{36} - 242638441 x^{35} + 4000193125 x^{34} - 4000193125 x^{33} + 51909015346 x^{32} - 51909015346 x^{31} + 538367825590 x^{30} - 538367825590 x^{29} + 4506847593370 x^{28} - 4506847593370 x^{27} + 30634460334754 x^{26} - 30634460334754 x^{25} + 169585855368478 x^{24} - 169585855368478 x^{23} + 765091834084438 x^{22} - 765091834084438 x^{21} + 2810291100353278 x^{20} - 2810291100353278 x^{19} + 8388107281086478 x^{18} - 8388107281086478 x^{17} + 20310689367403693 x^{16} - 20310689367403693 x^{15} + 39925259896506208 x^{14} - 39925259896506208 x^{13} + 64155023491279903 x^{12} - 64155023491279903 x^{11} + 85878259817628733 x^{10} - 85878259817628733 x^{9} + 99353199644123308 x^{8} - 99353199644123308 x^{7} + 104743175574721138 x^{6} - 104743175574721138 x^{5} + 105987016174089868 x^{4} - 105987016174089868 x^{3} + 106122707875839184 x^{2} - 106122707875839184 x + 106127132605244053 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $46$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 23]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-73299449025384478706393181231590775674353037913416963343762292213110803317842886655823241242247824779=-\,13^{23}\cdot 47^{45}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $155.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(611=13\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{611}(1,·)$, $\chi_{611}(131,·)$, $\chi_{611}(389,·)$, $\chi_{611}(129,·)$, $\chi_{611}(521,·)$, $\chi_{611}(14,·)$, $\chi_{611}(365,·)$, $\chi_{611}(144,·)$, $\chi_{611}(402,·)$, $\chi_{611}(532,·)$, $\chi_{611}(558,·)$, $\chi_{611}(534,·)$, $\chi_{611}(27,·)$, $\chi_{611}(157,·)$, $\chi_{611}(415,·)$, $\chi_{611}(38,·)$, $\chi_{611}(300,·)$, $\chi_{611}(430,·)$, $\chi_{611}(53,·)$, $\chi_{611}(311,·)$, $\chi_{611}(428,·)$, $\chi_{611}(573,·)$, $\chi_{611}(181,·)$, $\chi_{611}(196,·)$, $\chi_{611}(118,·)$, $\chi_{611}(454,·)$, $\chi_{611}(584,·)$, $\chi_{611}(183,·)$, $\chi_{611}(77,·)$, $\chi_{611}(79,·)$, $\chi_{611}(209,·)$, $\chi_{611}(467,·)$, $\chi_{611}(597,·)$, $\chi_{611}(90,·)$, $\chi_{611}(207,·)$, $\chi_{611}(222,·)$, $\chi_{611}(480,·)$, $\chi_{611}(482,·)$, $\chi_{611}(233,·)$, $\chi_{611}(610,·)$, $\chi_{611}(493,·)$, $\chi_{611}(495,·)$, $\chi_{611}(116,·)$, $\chi_{611}(246,·)$, $\chi_{611}(404,·)$, $\chi_{611}(378,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{29434370640613867} a^{24} + \frac{8734687734666649}{29434370640613867} a^{23} + \frac{72}{29434370640613867} a^{22} + \frac{14006040879721441}{29434370640613867} a^{21} + \frac{2268}{29434370640613867} a^{20} + \frac{8100037423049092}{29434370640613867} a^{19} + \frac{41040}{29434370640613867} a^{18} + \frac{3112534987315685}{29434370640613867} a^{17} + \frac{470934}{29434370640613867} a^{16} - \frac{2212283543248379}{29434370640613867} a^{15} + \frac{3569184}{29434370640613867} a^{14} + \frac{13948385837875214}{29434370640613867} a^{13} + \frac{18044208}{29434370640613867} a^{12} - \frac{1795999352297662}{29434370640613867} a^{11} + \frac{60046272}{29434370640613867} a^{10} + \frac{8374173991550827}{29434370640613867} a^{9} + \frac{126660105}{29434370640613867} a^{8} - \frac{8473983327699605}{29434370640613867} a^{7} + \frac{157621464}{29434370640613867} a^{6} - \frac{8473983327699605}{29434370640613867} a^{5} + \frac{101328084}{29434370640613867} a^{4} - \frac{1646886871198751}{29434370640613867} a^{3} + \frac{25509168}{29434370640613867} a^{2} - \frac{4238353297065357}{29434370640613867} a + \frac{1062882}{29434370640613867}$, $\frac{1}{29434370640613867} a^{25} + \frac{75}{29434370640613867} a^{23} + \frac{3230307436613920}{29434370640613867} a^{22} + \frac{2475}{29434370640613867} a^{21} + \frac{7159696332221651}{29434370640613867} a^{20} + \frac{47250}{29434370640613867} a^{19} + \frac{12727936304326918}{29434370640613867} a^{18} + \frac{577125}{29434370640613867} a^{17} - \frac{10348895259015295}{29434370640613867} a^{16} + \frac{4709340}{29434370640613867} a^{15} + \frac{14248529972302518}{29434370640613867} a^{14} + \frac{26025300}{29434370640613867} a^{13} - \frac{6819575259496040}{29434370640613867} a^{12} + \frac{96665400}{29434370640613867} a^{11} + \frac{1303622695192702}{29434370640613867} a^{10} + \frac{234555750}{29434370640613867} a^{9} - \frac{852737446735033}{29434370640613867} a^{8} + \frac{351833625}{29434370640613867} a^{7} + \frac{13438079150204384}{29434370640613867} a^{6} + \frac{295540245}{29434370640613867} a^{5} + \frac{10336983961695680}{29434370640613867} a^{4} + \frac{115145550}{29434370640613867} a^{3} + \frac{3101095188508704}{29434370640613867} a^{2} + \frac{13286025}{29434370640613867} a + \frac{11343699343795786}{29434370640613867}$, $\frac{1}{29434370640613867} a^{26} - \frac{4315118569879681}{29434370640613867} a^{23} - \frac{2925}{29434370640613867} a^{22} - \frac{13090397225401079}{29434370640613867} a^{21} - \frac{122850}{29434370640613867} a^{20} - \frac{6087457612077642}{29434370640613867} a^{19} - \frac{2500875}{29434370640613867} a^{18} - \frac{8314054182780734}{29434370640613867} a^{17} - \frac{30610710}{29434370640613867} a^{16} + \frac{3563571872247741}{29434370640613867} a^{15} - \frac{241663500}{29434370640613867} a^{14} + \frac{6688829961962122}{29434370640613867} a^{13} - \frac{1256650200}{29434370640613867} a^{12} - \frac{11168279085551983}{29434370640613867} a^{11} - \frac{4268914650}{29434370640613867} a^{10} - \frac{10794003360155851}{29434370640613867} a^{9} - \frac{9147674250}{29434370640613867} a^{8} + \frac{1430674634169685}{29434370640613867} a^{7} - \frac{11526069555}{29434370640613867} a^{6} - \frac{1670420554339019}{29434370640613867} a^{5} - \frac{7484460750}{29434370640613867} a^{4} + \frac{8880127965959561}{29434370640613867} a^{3} - \frac{1899901575}{29434370640613867} a^{2} + \frac{5442119576945024}{29434370640613867} a - \frac{79716150}{29434370640613867}$, $\frac{1}{29434370640613867} a^{27} - \frac{3159}{29434370640613867} a^{23} + \frac{3254433399797283}{29434370640613867} a^{22} - \frac{138996}{29434370640613867} a^{21} + \frac{8390406191235022}{29434370640613867} a^{20} - \frac{2985255}{29434370640613867} a^{19} + \frac{6978279746303634}{29434370640613867} a^{18} - \frac{38893608}{29434370640613867} a^{17} - \frac{9336868391437885}{29434370640613867} a^{16} - \frac{330595668}{29434370640613867} a^{15} + \frac{12711958117246277}{29434370640613867} a^{14} - \frac{1879175376}{29434370640613867} a^{13} - \frac{1976176652058770}{29434370640613867} a^{12} - \frac{7125206634}{29434370640613867} a^{11} + \frac{10890326224728293}{29434370640613867} a^{10} - \frac{17563534560}{29434370640613867} a^{9} - \frac{4339091268789591}{29434370640613867} a^{8} - \frac{26674618113}{29434370640613867} a^{7} - \frac{3617796675245875}{29434370640613867} a^{6} - \frac{22633009308}{29434370640613867} a^{5} - \frac{13396307140776180}{29434370640613867} a^{4} - \frac{8891539371}{29434370640613867} a^{3} - \frac{7781820126168261}{29434370640613867} a^{2} - \frac{1033121304}{29434370640613867} a - \frac{1777429597655298}{29434370640613867}$, $\frac{1}{29434370640613867} a^{28} - \frac{13306673684065772}{29434370640613867} a^{23} + \frac{88452}{29434370640613867} a^{22} + \frac{13614472388625040}{29434370640613867} a^{21} + \frac{4179357}{29434370640613867} a^{20} - \frac{12905958175679028}{29434370640613867} a^{19} + \frac{90751752}{29434370640613867} a^{18} - \frac{7918637426220548}{29434370640613867} a^{17} + \frac{1157084838}{29434370640613867} a^{16} + \frac{54086821103495}{29434370640613867} a^{15} + \frac{9395876880}{29434370640613867} a^{14} - \frac{2278163803216643}{29434370640613867} a^{13} + \frac{49876446438}{29434370640613867} a^{12} - \frac{11272464685723501}{29434370640613867} a^{11} + \frac{172122638688}{29434370640613867} a^{10} - \frac{11822657871593531}{29434370640613867} a^{9} + \frac{373444653582}{29434370640613867} a^{8} + \frac{12346154080320900}{29434370640613867} a^{7} + \frac{475293195468}{29434370640613867} a^{6} + \frac{2567643614790595}{29434370640613867} a^{5} + \frac{311203877985}{29434370640613867} a^{4} - \frac{413842854368211}{29434370640613867} a^{3} + \frac{79550340408}{29434370640613867} a^{2} + \frac{1903146452191424}{29434370640613867} a + \frac{3357644238}{29434370640613867}$, $\frac{1}{29434370640613867} a^{29} + \frac{98658}{29434370640613867} a^{23} + \frac{360746501103013}{29434370640613867} a^{22} + \frac{4883571}{29434370640613867} a^{21} - \frac{3599949343721807}{29434370640613867} a^{20} + \frac{111878172}{29434370640613867} a^{19} + \frac{2090861323987881}{29434370640613867} a^{18} + \frac{1518346620}{29434370640613867} a^{17} - \frac{12390568040909757}{29434370640613867} a^{16} + \frac{13274687592}{29434370640613867} a^{15} - \frac{11390790903013780}{29434370640613867} a^{14} + \frac{77028121422}{29434370640613867} a^{13} - \frac{108358777948730}{29434370640613867} a^{12} + \frac{296700912144}{29434370640613867} a^{11} + \frac{11477015940208425}{29434370640613867} a^{10} + \frac{740505637872}{29434370640613867} a^{9} + \frac{8144106740978017}{29434370640613867} a^{8} + \frac{1136002967190}{29434370640613867} a^{7} - \frac{9856639230763938}{29434370640613867} a^{6} + \frac{971913649707}{29434370640613867} a^{5} + \frac{2111393402280256}{29434370640613867} a^{4} + \frac{384493311972}{29434370640613867} a^{3} + \frac{10360591134587730}{29434370640613867} a^{2} + \frac{44940776724}{29434370640613867} a + \frac{2805257748484335}{29434370640613867}$, $\frac{1}{29434370640613867} a^{30} + \frac{3607465011030130}{29434370640613867} a^{23} - \frac{2219805}{29434370640613867} a^{22} + \frac{14383033356952197}{29434370640613867} a^{21} - \frac{111878172}{29434370640613867} a^{20} + \frac{11761670813158395}{29434370640613867} a^{19} - \frac{2530577700}{29434370640613867} a^{18} - \frac{78453107286076}{29434370640613867} a^{17} - \frac{33186718980}{29434370640613867} a^{16} - \frac{7779281256262203}{29434370640613867} a^{15} - \frac{275100433650}{29434370640613867} a^{14} - \frac{4262161891301558}{29434370640613867} a^{13} - \frac{1483504560720}{29434370640613867} a^{12} + \frac{6269858427466681}{29434370640613867} a^{11} - \frac{5183539465104}{29434370640613867} a^{10} - \frac{7198410930493193}{29434370640613867} a^{9} - \frac{11360029671900}{29434370640613867} a^{8} - \frac{8038800398798249}{29434370640613867} a^{7} - \frac{14578704745605}{29434370640613867} a^{6} + \frac{3929232234245945}{29434370640613867} a^{5} - \frac{9612332799300}{29434370640613867} a^{4} + \frac{11199593672418048}{29434370640613867} a^{3} - \frac{2471742719820}{29434370640613867} a^{2} + \frac{5595519061880639}{29434370640613867} a - \frac{104861812356}{29434370640613867}$, $\frac{1}{29434370640613867} a^{31} - \frac{2548665}{29434370640613867} a^{23} - \frac{9879482312306227}{29434370640613867} a^{22} - \frac{134569512}{29434370640613867} a^{21} + \frac{12786063887478581}{29434370640613867} a^{20} - \frac{3211317900}{29434370640613867} a^{19} + \frac{4441816503929734}{29434370640613867} a^{18} - \frac{44827376400}{29434370640613867} a^{17} + \frac{7297849231671883}{29434370640613867} a^{16} - \frac{400084334370}{29434370640613867} a^{15} + \frac{1564198393937268}{29434370640613867} a^{14} - \frac{2358391865760}{29434370640613867} a^{13} + \frac{3020490268825338}{29434370640613867} a^{12} - \frac{9197728276464}{29434370640613867} a^{11} + \frac{786987202823463}{29434370640613867} a^{10} - \frac{23187550276800}{29434370640613867} a^{9} - \frac{13270379191793828}{29434370640613867} a^{8} - \frac{35868241834425}{29434370640613867} a^{7} - \frac{4543468306411700}{29434370640613867} a^{6} - \frac{30901869888120}{29434370640613867} a^{5} - \frac{4759417618223962}{29434370640613867} a^{4} - \frac{12297682914660}{29434370640613867} a^{3} + \frac{14339620972754397}{29434370640613867} a^{2} - \frac{1444762748016}{29434370640613867} a - \frac{11899983520636038}{29434370640613867}$, $\frac{1}{29434370640613867} a^{32} + \frac{9267253423391785}{29434370640613867} a^{23} + \frac{48934368}{29434370640613867} a^{22} + \frac{9364150823017394}{29434370640613867} a^{21} + \frac{2569054320}{29434370640613867} a^{20} - \frac{9912463508064275}{29434370640613867} a^{19} + \frac{59769835200}{29434370640613867} a^{18} - \frac{11515685040698895}{29434370640613867} a^{17} + \frac{800168668740}{29434370640613867} a^{16} - \frac{8335750665405848}{29434370640613867} a^{15} + \frac{6738262473600}{29434370640613867} a^{14} - \frac{7410411865348740}{29434370640613867} a^{13} + \frac{36790913105856}{29434370640613867} a^{12} - \frac{2055173374212863}{29434370640613867} a^{11} + \frac{129850281550080}{29434370640613867} a^{10} + \frac{431175659898826}{29434370640613867} a^{9} + \frac{286945934675400}{29434370640613867} a^{8} + \frac{2458708042266757}{29434370640613867} a^{7} + \frac{370822438657440}{29434370640613867} a^{6} + \frac{2242758730454495}{29434370640613867} a^{5} + \frac{245953658293200}{29434370640613867} a^{4} - \frac{7334611254528818}{29434370640613867} a^{3} + \frac{63569560912704}{29434370640613867} a^{2} - \frac{5490079075070246}{29434370640613867} a + \frac{2708930152530}{29434370640613867}$, $\frac{1}{29434370640613867} a^{33} + \frac{57672648}{29434370640613867} a^{23} - \frac{10321941567686052}{29434370640613867} a^{22} + \frac{3171995640}{29434370640613867} a^{21} - \frac{11902590362331617}{29434370640613867} a^{20} + \frac{77858074800}{29434370640613867} a^{19} + \frac{11341236972834079}{29434370640613867} a^{18} + \frac{1109477565900}{29434370640613867} a^{17} - \frac{9490187793609081}{29434370640613867} a^{16} + \frac{10059263264160}{29434370640613867} a^{15} + \frac{10176185736186533}{29434370640613867} a^{14} + \frac{60037918639776}{29434370640613867} a^{13} + \frac{186978725074631}{29434370640613867} a^{12} + \frac{236513012823360}{29434370640613867} a^{11} - \frac{1506755878130412}{29434370640613867} a^{10} + \frac{601220053605600}{29434370640613867} a^{9} - \frac{9907533038436317}{29434370640613867} a^{8} + \frac{936515852731800}{29434370640613867} a^{7} + \frac{4514281103281212}{29434370640613867} a^{6} + \frac{811647072367560}{29434370640613867} a^{5} + \frac{433018265277043}{29434370640613867} a^{4} + \frac{324658828947024}{29434370640613867} a^{3} + \frac{10256336978315349}{29434370640613867} a^{2} + \frac{38312012157210}{29434370640613867} a + \frac{9241125439070111}{29434370640613867}$, $\frac{1}{29434370640613867} a^{34} + \frac{12227035133453674}{29434370640613867} a^{23} - \frac{980435016}{29434370640613867} a^{22} + \frac{13389528704388393}{29434370640613867} a^{21} - \frac{52943490864}{29434370640613867} a^{20} + \frac{4811172318473837}{29434370640613867} a^{19} - \frac{1257407908020}{29434370640613867} a^{18} + \frac{14243811563654569}{29434370640613867} a^{17} - \frac{17100747549072}{29434370640613867} a^{16} + \frac{6291763204569102}{29434370640613867} a^{15} - \frac{145806373839456}{29434370640613867} a^{14} + \frac{2430391644366481}{29434370640613867} a^{13} - \frac{804144243599424}{29434370640613867} a^{12} - \frac{13722085914790175}{29434370640613867} a^{11} - \frac{2861807455162656}{29434370640613867} a^{10} + \frac{2982949345996339}{29434370640613867} a^{9} - \frac{6368307798576240}{29434370640613867} a^{8} - \frac{13490969501599421}{29434370640613867} a^{7} - \frac{8278800138149112}{29434370640613867} a^{6} + \frac{11862138301010277}{29434370640613867} a^{5} - \frac{5519200092099408}{29434370640613867} a^{4} + \frac{8738768385435180}{29434370640613867} a^{3} - \frac{1432869254679654}{29434370640613867} a^{2} + \frac{13047962081942888}{29434370640613867} a - \frac{61299219451536}{29434370640613867}$, $\frac{1}{29434370640613867} a^{35} - \frac{1183283640}{29434370640613867} a^{23} - \frac{13360252326473992}{29434370640613867} a^{22} - \frac{66940045920}{29434370640613867} a^{21} + \frac{1072633103803919}{29434370640613867} a^{20} - \frac{1677304559700}{29434370640613867} a^{19} + \frac{13872615810078225}{29434370640613867} a^{18} - \frac{24280980292800}{29434370640613867} a^{17} + \frac{7919166060403328}{29434370640613867} a^{16} - \frac{222899399087904}{29434370640613867} a^{15} + \frac{10116860029539478}{29434370640613867} a^{14} - \frac{1343795420338560}{29434370640613867} a^{13} + \frac{608639831961754}{29434370640613867} a^{12} - \frac{5337854030789280}{29434370640613867} a^{11} - \frac{9681076205230717}{29434370640613867} a^{10} - \frac{13663802173190400}{29434370640613867} a^{9} + \frac{11306000222355275}{29434370640613867} a^{8} + \frac{8023680628159267}{29434370640613867} a^{7} + \frac{8053441869653122}{29434370640613867} a^{6} + \frac{10783280674208971}{29434370640613867} a^{5} - \frac{12631774732260477}{29434370640613867} a^{4} - \frac{7493741504359110}{29434370640613867} a^{3} + \frac{4786278577008358}{29434370640613867} a^{2} - \frac{887781798953280}{29434370640613867} a - \frac{2797101032756761}{29434370640613867}$, $\frac{1}{29434370640613867} a^{36} + \frac{8141597962997649}{29434370640613867} a^{23} + \frac{18256376160}{29434370640613867} a^{22} + \frac{12981771046653798}{29434370640613867} a^{21} + \frac{1006382735820}{29434370640613867} a^{20} - \frac{11500064232405676}{29434370640613867} a^{19} + \frac{24280980292800}{29434370640613867} a^{18} - \frac{5042162505293081}{29434370640613867} a^{17} + \frac{334349098631856}{29434370640613867} a^{16} - \frac{3563508681636533}{29434370640613867} a^{15} + \frac{2879561615011200}{29434370640613867} a^{14} - \frac{6850829224428722}{29434370640613867} a^{13} - \frac{13420808548246027}{29434370640613867} a^{12} - \frac{621036227766626}{29434370640613867} a^{11} - \frac{1480772153828054}{29434370640613867} a^{10} - \frac{2471498760603524}{29434370640613867} a^{9} + \frac{10726657512272132}{29434370640613867} a^{8} + \frac{914566084695604}{29434370640613867} a^{7} - \frac{8746414146039138}{29434370640613867} a^{6} + \frac{9663720123395872}{29434370640613867} a^{5} - \frac{5331359997068818}{29434370640613867} a^{4} + \frac{10548142257986078}{29434370640613867} a^{3} - \frac{137571275155627}{29434370640613867} a^{2} + \frac{3340311403851813}{29434370640613867} a + \frac{1257690881850480}{29434370640613867}$, $\frac{1}{29434370640613867} a^{37} + \frac{22516197264}{29434370640613867} a^{23} - \frac{13960240117513457}{29434370640613867} a^{22} + \frac{1300310391996}{29434370640613867} a^{21} + \frac{8140517994434868}{29434370640613867} a^{20} + \frac{33098809978080}{29434370640613867} a^{19} + \frac{2752948319810143}{29434370640613867} a^{18} + \frac{485133986250144}{29434370640613867} a^{17} - \frac{8304598013541412}{29434370640613867} a^{16} + \frac{4498515145228608}{29434370640613867} a^{15} + \frac{8339558530621543}{29434370640613867} a^{14} - \frac{2088133836724171}{29434370640613867} a^{13} - \frac{7222570503418465}{29434370640613867} a^{12} - \frac{8352535346896684}{29434370640613867} a^{11} - \frac{1436297950360151}{29434370640613867} a^{10} - \frac{12674184464513710}{29434370640613867} a^{9} + \frac{9996873412696594}{29434370640613867} a^{8} + \frac{2113937448851307}{29434370640613867} a^{7} + \frac{1343233260054526}{29434370640613867} a^{6} + \frac{5528991597821627}{29434370640613867} a^{5} - \frac{11620382520226997}{29434370640613867} a^{4} + \frac{9403263405657481}{29434370640613867} a^{3} + \frac{229441163793741}{29434370640613867} a^{2} - \frac{10820545589226763}{29434370640613867} a - \frac{129619593335753}{29434370640613867}$, $\frac{1}{29434370640613867} a^{38} - \frac{4300689082153661}{29434370640613867} a^{23} - \frac{320855811012}{29434370640613867} a^{22} - \frac{2340985299858149}{29434370640613867} a^{21} - \frac{17967925416672}{29434370640613867} a^{20} + \frac{12085926537772170}{29434370640613867} a^{19} - \frac{438930749464416}{29434370640613867} a^{18} + \frac{1174039246478528}{29434370640613867} a^{17} - \frac{6105127697095968}{29434370640613867} a^{16} - \frac{2979760191522906}{29434370640613867} a^{15} + \frac{5850527069604854}{29434370640613867} a^{14} + \frac{1845310363411993}{29434370640613867} a^{13} - \frac{2558293178949458}{29434370640613867} a^{12} - \frac{3116566091687854}{29434370640613867} a^{11} - \frac{10706840316075636}{29434370640613867} a^{10} - \frac{2838123068165531}{29434370640613867} a^{9} + \frac{5343979929443686}{29434370640613867} a^{8} + \frac{7674610235116568}{29434370640613867} a^{7} - \frac{11382507992988829}{29434370640613867} a^{6} - \frac{5289005545164955}{29434370640613867} a^{5} - \frac{5673324994236936}{29434370640613867} a^{4} - \frac{12697661346508168}{29434370640613867} a^{3} + \frac{3497408494534225}{29434370640613867} a^{2} - \frac{5906184113915177}{29434370640613867} a + \frac{5502309860259019}{29434370640613867}$, $\frac{1}{29434370640613867} a^{39} - \frac{403657310628}{29434370640613867} a^{23} + \frac{12964922209066773}{29434370640613867} a^{22} - \frac{23681228890176}{29434370640613867} a^{21} - \frac{6162287821528526}{29434370640613867} a^{20} - \frac{610329853669536}{29434370640613867} a^{19} + \frac{12967609711979436}{29434370640613867} a^{18} - \frac{9036052379003520}{29434370640613867} a^{17} - \frac{11876955238907935}{29434370640613867} a^{16} + \frac{3816022178158689}{29434370640613867} a^{15} - \frac{12914030954618149}{29434370640613867} a^{14} + \frac{12634543221541254}{29434370640613867} a^{13} + \frac{13840361460180681}{29434370640613867} a^{12} + \frac{8789894428658093}{29434370640613867} a^{11} + \frac{12035566368110185}{29434370640613867} a^{10} + \frac{241678619586813}{29434370640613867} a^{9} + \frac{416187423954956}{29434370640613867} a^{8} - \frac{14679776222608427}{29434370640613867} a^{7} - \frac{10397126735862001}{29434370640613867} a^{6} - \frac{8970593223856534}{29434370640613867} a^{5} + \frac{5043096917053636}{29434370640613867} a^{4} + \frac{1975592388555949}{29434370640613867} a^{3} + \frac{2882550717840880}{29434370640613867} a^{2} - \frac{8084469899926140}{29434370640613867} a - \frac{3313099045420231}{29434370640613867}$, $\frac{1}{29434370640613867} a^{40} + \frac{5955869764106131}{29434370640613867} a^{23} + \frac{5382097475040}{29434370640613867} a^{22} + \frac{10597394366622915}{29434370640613867} a^{21} + \frac{305164926834768}{29434370640613867} a^{20} - \frac{14060596174526940}{29434370640613867} a^{19} + \frac{7530043649169600}{29434370640613867} a^{18} - \frac{8996219776467866}{29434370640613867} a^{17} - \frac{12128620382851828}{29434370640613867} a^{16} - \frac{6770867581568033}{29434370640613867} a^{15} + \frac{11077596407949323}{29434370640613867} a^{14} - \frac{2026236209696241}{29434370640613867} a^{13} - \frac{7257550751338299}{29434370640613867} a^{12} + \frac{1567491357033673}{29434370640613867} a^{11} + \frac{13871310151753088}{29434370640613867} a^{10} - \frac{5197787327440738}{29434370640613867} a^{9} + \frac{14530139831814401}{29434370640613867} a^{8} - \frac{2841658904005930}{29434370640613867} a^{7} + \frac{8410707897696271}{29434370640613867} a^{6} + \frac{12598564748909707}{29434370640613867} a^{5} - \frac{9977719536642429}{29434370640613867} a^{4} + \frac{13162236788069959}{29434370640613867} a^{3} - \frac{13152042876942086}{29434370640613867} a^{2} - \frac{3249249610416896}{29434370640613867} a - \frac{12475469974298109}{29434370640613867}$, $\frac{1}{29434370640613867} a^{41} + \frac{6895812389895}{29434370640613867} a^{23} - \frac{6144039680424379}{29434370640613867} a^{22} + \frac{409611255959763}{29434370640613867} a^{21} - \frac{11597097125467095}{29434370640613867} a^{20} + \frac{10663433522919450}{29434370640613867} a^{19} + \frac{14556831606081329}{29434370640613867} a^{18} + \frac{12017975817656740}{29434370640613867} a^{17} + \frac{2270357597735910}{29434370640613867} a^{16} - \frac{2319435583855557}{29434370640613867} a^{15} - \frac{6314604330174344}{29434370640613867} a^{14} - \frac{12733662772130858}{29434370640613867} a^{13} - \frac{2124920971674929}{29434370640613867} a^{12} + \frac{6059955374360092}{29434370640613867} a^{11} - \frac{1160197578601168}{29434370640613867} a^{10} + \frac{2026816162929276}{29434370640613867} a^{9} + \frac{8434604220010088}{29434370640613867} a^{8} - \frac{14095274706296954}{29434370640613867} a^{7} + \frac{1121459859153178}{29434370640613867} a^{6} - \frac{3049331500021787}{29434370640613867} a^{5} - \frac{13137997481453867}{29434370640613867} a^{4} + \frac{3630768820243072}{29434370640613867} a^{3} - \frac{13986982802830428}{29434370640613867} a^{2} + \frac{3192354639233443}{29434370640613867} a + \frac{4458322890418414}{29434370640613867}$, $\frac{1}{29434370640613867} a^{42} - \frac{9049271414904524}{29434370640613867} a^{23} - \frac{86887236112677}{29434370640613867} a^{22} - \frac{6017492320300031}{29434370640613867} a^{21} - \frac{4976268977362410}{29434370640613867} a^{20} + \frac{5338751917410047}{29434370640613867} a^{19} - \frac{6076828898109257}{29434370640613867} a^{18} + \frac{9473670508894643}{29434370640613867} a^{17} - \frac{12011177139142117}{29434370640613867} a^{16} - \frac{3334286270862980}{29434370640613867} a^{15} + \frac{11411314406680141}{29434370640613867} a^{14} - \frac{10697065197109248}{29434370640613867} a^{13} - \frac{4328438993302259}{29434370640613867} a^{12} + \frac{1063193350272710}{29434370640613867} a^{11} - \frac{12507806927025075}{29434370640613867} a^{10} + \frac{1319708980871326}{29434370640613867} a^{9} - \frac{2902249532046571}{29434370640613867} a^{8} + \frac{11862144941194500}{29434370640613867} a^{7} - \frac{8089050140461358}{29434370640613867} a^{6} - \frac{2397312399412545}{29434370640613867} a^{5} + \frac{6698314831520605}{29434370640613867} a^{4} + \frac{9083715321566408}{29434370640613867} a^{3} - \frac{3445447365354725}{29434370640613867} a^{2} - \frac{13802487831246648}{29434370640613867} a - \frac{276575083524507}{29434370640613867}$, $\frac{1}{29434370640613867} a^{43} - \frac{113216701601367}{29434370640613867} a^{23} - \frac{2026104540679377}{29434370640613867} a^{22} - \frac{6793002096082020}{29434370640613867} a^{21} + \frac{13329984413005180}{29434370640613867} a^{20} - \frac{1710081178469823}{29434370640613867} a^{19} - \frac{11316205075214203}{29434370640613867} a^{18} - \frac{2095406542658303}{29434370640613867} a^{17} + \frac{9765760378736575}{29434370640613867} a^{16} + \frac{12531314307783041}{29434370640613867} a^{15} - \frac{7461500048463134}{29434370640613867} a^{14} + \frac{3511560314418041}{29434370640613867} a^{13} + \frac{1068344579198138}{29434370640613867} a^{12} - \frac{5970416038098742}{29434370640613867} a^{11} - \frac{10041141126807400}{29434370640613867} a^{10} - \frac{14651506159249664}{29434370640613867} a^{9} - \frac{13021972337209496}{29434370640613867} a^{8} + \frac{6083532699309715}{29434370640613867} a^{7} + \frac{4573419368698133}{29434370640613867} a^{6} - \frac{8563472969322189}{29434370640613867} a^{5} + \frac{950169755088758}{29434370640613867} a^{4} - \frac{3696802356371276}{29434370640613867} a^{3} - \frac{4529181923270653}{29434370640613867} a^{2} + \frac{11730482679769818}{29434370640613867} a + \frac{8971412516344711}{29434370640613867}$, $\frac{1}{29434370640613867} a^{44} + \frac{2858888277256288}{29434370640613867} a^{23} + \frac{1358600419216404}{29434370640613867} a^{22} - \frac{2817958836800339}{29434370640613867} a^{21} - \frac{9843937712094270}{29434370640613867} a^{20} + \frac{4629798321055966}{29434370640613867} a^{19} - \frac{6312534039547609}{29434370640613867} a^{18} - \frac{3070976758998045}{29434370640613867} a^{17} - \frac{4954134546377185}{29434370640613867} a^{16} + \frac{335155957844288}{29434370640613867} a^{15} - \frac{9723076299887474}{29434370640613867} a^{14} - \frac{3223804657877642}{29434370640613867} a^{13} + \frac{7248041155694459}{29434370640613867} a^{12} - \frac{10688762505934359}{29434370640613867} a^{11} + \frac{5095894899254106}{29434370640613867} a^{10} - \frac{10199618619181343}{29434370640613867} a^{9} + \frac{2666826763651121}{29434370640613867} a^{8} + \frac{3766781933026035}{29434370640613867} a^{7} - \frac{8236693811824060}{29434370640613867} a^{6} + \frac{143532319416660}{29434370640613867} a^{5} + \frac{11230455279470169}{29434370640613867} a^{4} + \frac{4155253303531107}{29434370640613867} a^{3} + \frac{4579151427586301}{29434370640613867} a^{2} - \frac{13927013204139122}{29434370640613867} a + \frac{8287052634671398}{29434370640613867}$, $\frac{1}{29434370640613867} a^{45} + \frac{1798147613668770}{29434370640613867} a^{23} - \frac{2617320314956006}{29434370640613867} a^{22} - \frac{8949551935494883}{29434370640613867} a^{21} - \frac{3767273561154478}{29434370640613867} a^{20} - \frac{8915331382179866}{29434370640613867} a^{19} - \frac{6444501870183703}{29434370640613867} a^{18} + \frac{12350209239900341}{29434370640613867} a^{17} + \frac{10190666864001743}{29434370640613867} a^{16} + \frac{1013884227020333}{29434370640613867} a^{15} - \frac{5988276318089212}{29434370640613867} a^{14} - \frac{5896347077792493}{29434370640613867} a^{13} - \frac{1771303178748733}{29434370640613867} a^{12} - \frac{13659245502937038}{29434370640613867} a^{11} + \frac{12549553781056637}{29434370640613867} a^{10} + \frac{6274886502708520}{29434370640613867} a^{9} - \frac{12634368311564810}{29434370640613867} a^{8} + \frac{10031561974724805}{29434370640613867} a^{7} - \frac{13725816731493310}{29434370640613867} a^{6} + \frac{64340425405167}{29434370640613867} a^{5} - \frac{8965666892141569}{29434370640613867} a^{4} - \frac{574440043520623}{29434370640613867} a^{3} - \frac{12907651970512025}{29434370640613867} a^{2} - \frac{13822524850016904}{29434370640613867} a - \frac{3636822945342271}{29434370640613867}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $22$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{46}$ (as 46T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$ is not computed

Intermediate fields

\(\Q(\sqrt{-611}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $46$ $23^{2}$ $23^{2}$ $46$ $23^{2}$ R $23^{2}$ $23^{2}$ $46$ $46$ $23^{2}$ $46$ $23^{2}$ $46$ R $23^{2}$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
13Data not computed
47Data not computed