Properties

Label 46.0.419...375.1
Degree $46$
Signature $[0, 23]$
Discriminant $-4.192\times 10^{100}$
Root discriminant \(153.97\)
Ramified primes $3,5,47$
Class number not computed
Class group not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 21*x^45 + 257*x^44 - 2275*x^43 + 16384*x^42 - 101148*x^41 + 555868*x^40 - 2773061*x^39 + 12764350*x^38 - 54717566*x^37 + 220411975*x^36 - 838622105*x^35 + 3030581020*x^34 - 10433377545*x^33 + 34346625500*x^32 - 108311066940*x^31 + 328058481150*x^30 - 955269123060*x^29 + 2679603110905*x^28 - 7242985668834*x^27 + 18895590411056*x^26 - 47565631805041*x^25 + 115691372227157*x^24 - 271669498342240*x^23 + 616666273593665*x^22 - 1351191092366848*x^21 + 2861502035274188*x^20 - 5844226298666601*x^19 + 11528422276701890*x^18 - 21892211952456407*x^17 + 40102623357336934*x^16 - 70512951104599839*x^15 + 119377822272400223*x^14 - 193124835740771010*x^13 + 300080474989777953*x^12 - 442454098080721470*x^11 + 624685689856470240*x^10 - 827583193065916590*x^9 + 1046376694212400500*x^8 - 1217672042714811795*x^7 + 1349148741219481645*x^6 - 1325965235556309370*x^5 + 1244120066328799465*x^4 - 953228966874939950*x^3 + 714248269821476266*x^2 - 340555683118656924*x + 181351969023278929)
 
gp: K = bnfinit(y^46 - 21*y^45 + 257*y^44 - 2275*y^43 + 16384*y^42 - 101148*y^41 + 555868*y^40 - 2773061*y^39 + 12764350*y^38 - 54717566*y^37 + 220411975*y^36 - 838622105*y^35 + 3030581020*y^34 - 10433377545*y^33 + 34346625500*y^32 - 108311066940*y^31 + 328058481150*y^30 - 955269123060*y^29 + 2679603110905*y^28 - 7242985668834*y^27 + 18895590411056*y^26 - 47565631805041*y^25 + 115691372227157*y^24 - 271669498342240*y^23 + 616666273593665*y^22 - 1351191092366848*y^21 + 2861502035274188*y^20 - 5844226298666601*y^19 + 11528422276701890*y^18 - 21892211952456407*y^17 + 40102623357336934*y^16 - 70512951104599839*y^15 + 119377822272400223*y^14 - 193124835740771010*y^13 + 300080474989777953*y^12 - 442454098080721470*y^11 + 624685689856470240*y^10 - 827583193065916590*y^9 + 1046376694212400500*y^8 - 1217672042714811795*y^7 + 1349148741219481645*y^6 - 1325965235556309370*y^5 + 1244120066328799465*y^4 - 953228966874939950*y^3 + 714248269821476266*y^2 - 340555683118656924*y + 181351969023278929, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - 21*x^45 + 257*x^44 - 2275*x^43 + 16384*x^42 - 101148*x^41 + 555868*x^40 - 2773061*x^39 + 12764350*x^38 - 54717566*x^37 + 220411975*x^36 - 838622105*x^35 + 3030581020*x^34 - 10433377545*x^33 + 34346625500*x^32 - 108311066940*x^31 + 328058481150*x^30 - 955269123060*x^29 + 2679603110905*x^28 - 7242985668834*x^27 + 18895590411056*x^26 - 47565631805041*x^25 + 115691372227157*x^24 - 271669498342240*x^23 + 616666273593665*x^22 - 1351191092366848*x^21 + 2861502035274188*x^20 - 5844226298666601*x^19 + 11528422276701890*x^18 - 21892211952456407*x^17 + 40102623357336934*x^16 - 70512951104599839*x^15 + 119377822272400223*x^14 - 193124835740771010*x^13 + 300080474989777953*x^12 - 442454098080721470*x^11 + 624685689856470240*x^10 - 827583193065916590*x^9 + 1046376694212400500*x^8 - 1217672042714811795*x^7 + 1349148741219481645*x^6 - 1325965235556309370*x^5 + 1244120066328799465*x^4 - 953228966874939950*x^3 + 714248269821476266*x^2 - 340555683118656924*x + 181351969023278929);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - 21*x^45 + 257*x^44 - 2275*x^43 + 16384*x^42 - 101148*x^41 + 555868*x^40 - 2773061*x^39 + 12764350*x^38 - 54717566*x^37 + 220411975*x^36 - 838622105*x^35 + 3030581020*x^34 - 10433377545*x^33 + 34346625500*x^32 - 108311066940*x^31 + 328058481150*x^30 - 955269123060*x^29 + 2679603110905*x^28 - 7242985668834*x^27 + 18895590411056*x^26 - 47565631805041*x^25 + 115691372227157*x^24 - 271669498342240*x^23 + 616666273593665*x^22 - 1351191092366848*x^21 + 2861502035274188*x^20 - 5844226298666601*x^19 + 11528422276701890*x^18 - 21892211952456407*x^17 + 40102623357336934*x^16 - 70512951104599839*x^15 + 119377822272400223*x^14 - 193124835740771010*x^13 + 300080474989777953*x^12 - 442454098080721470*x^11 + 624685689856470240*x^10 - 827583193065916590*x^9 + 1046376694212400500*x^8 - 1217672042714811795*x^7 + 1349148741219481645*x^6 - 1325965235556309370*x^5 + 1244120066328799465*x^4 - 953228966874939950*x^3 + 714248269821476266*x^2 - 340555683118656924*x + 181351969023278929)
 

\( x^{46} - 21 x^{45} + 257 x^{44} - 2275 x^{43} + 16384 x^{42} - 101148 x^{41} + 555868 x^{40} + \cdots + 18\!\cdots\!29 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $46$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 23]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-419\!\cdots\!375\) \(\medspace = -\,3^{23}\cdot 5^{23}\cdot 47^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(153.97\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{1/2}47^{22/23}\approx 153.97264864641676$
Ramified primes:   \(3\), \(5\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-15}) \)
$\card{ \Gal(K/\Q) }$:  $46$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(705=3\cdot 5\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{705}(256,·)$, $\chi_{705}(1,·)$, $\chi_{705}(136,·)$, $\chi_{705}(524,·)$, $\chi_{705}(269,·)$, $\chi_{705}(14,·)$, $\chi_{705}(271,·)$, $\chi_{705}(16,·)$, $\chi_{705}(659,·)$, $\chi_{705}(404,·)$, $\chi_{705}(149,·)$, $\chi_{705}(89,·)$, $\chi_{705}(284,·)$, $\chi_{705}(541,·)$, $\chi_{705}(286,·)$, $\chi_{705}(674,·)$, $\chi_{705}(676,·)$, $\chi_{705}(166,·)$, $\chi_{705}(554,·)$, $\chi_{705}(299,·)$, $\chi_{705}(314,·)$, $\chi_{705}(571,·)$, $\chi_{705}(316,·)$, $\chi_{705}(61,·)$, $\chi_{705}(194,·)$, $\chi_{705}(451,·)$, $\chi_{705}(196,·)$, $\chi_{705}(74,·)$, $\chi_{705}(331,·)$, $\chi_{705}(209,·)$, $\chi_{705}(526,·)$, $\chi_{705}(601,·)$, $\chi_{705}(346,·)$, $\chi_{705}(479,·)$, $\chi_{705}(224,·)$, $\chi_{705}(59,·)$, $\chi_{705}(614,·)$, $\chi_{705}(361,·)$, $\chi_{705}(106,·)$, $\chi_{705}(494,·)$, $\chi_{705}(239,·)$, $\chi_{705}(241,·)$, $\chi_{705}(629,·)$, $\chi_{705}(119,·)$, $\chi_{705}(121,·)$, $\chi_{705}(661,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4194304}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $\frac{1}{563}a^{44}+\frac{65}{563}a^{43}+\frac{258}{563}a^{42}+\frac{58}{563}a^{41}-\frac{141}{563}a^{40}+\frac{15}{563}a^{39}+\frac{200}{563}a^{38}+\frac{76}{563}a^{37}+\frac{112}{563}a^{36}+\frac{203}{563}a^{35}-\frac{180}{563}a^{34}-\frac{226}{563}a^{33}+\frac{83}{563}a^{32}+\frac{81}{563}a^{31}+\frac{15}{563}a^{30}-\frac{270}{563}a^{29}+\frac{253}{563}a^{28}-\frac{195}{563}a^{27}-\frac{269}{563}a^{26}-\frac{160}{563}a^{25}-\frac{174}{563}a^{24}+\frac{152}{563}a^{23}-\frac{63}{563}a^{22}+\frac{227}{563}a^{21}-\frac{18}{563}a^{20}+\frac{165}{563}a^{19}-\frac{120}{563}a^{18}+\frac{103}{563}a^{17}+\frac{42}{563}a^{16}-\frac{17}{563}a^{15}+\frac{114}{563}a^{14}+\frac{59}{563}a^{13}+\frac{97}{563}a^{12}+\frac{57}{563}a^{11}+\frac{251}{563}a^{10}-\frac{279}{563}a^{9}+\frac{85}{563}a^{8}-\frac{28}{563}a^{7}+\frac{119}{563}a^{6}+\frac{97}{563}a^{5}-\frac{13}{563}a^{4}+\frac{196}{563}a^{3}+\frac{25}{563}a^{2}-\frac{109}{563}a-\frac{49}{563}$, $\frac{1}{45\!\cdots\!93}a^{45}+\frac{31\!\cdots\!16}{45\!\cdots\!93}a^{44}-\frac{12\!\cdots\!68}{45\!\cdots\!93}a^{43}+\frac{20\!\cdots\!62}{45\!\cdots\!93}a^{42}-\frac{20\!\cdots\!76}{45\!\cdots\!93}a^{41}-\frac{43\!\cdots\!43}{45\!\cdots\!93}a^{40}+\frac{83\!\cdots\!17}{45\!\cdots\!93}a^{39}+\frac{85\!\cdots\!39}{45\!\cdots\!93}a^{38}+\frac{13\!\cdots\!86}{45\!\cdots\!93}a^{37}-\frac{11\!\cdots\!40}{45\!\cdots\!93}a^{36}-\frac{15\!\cdots\!21}{45\!\cdots\!93}a^{35}-\frac{16\!\cdots\!19}{45\!\cdots\!93}a^{34}-\frac{60\!\cdots\!92}{45\!\cdots\!93}a^{33}-\frac{13\!\cdots\!30}{45\!\cdots\!93}a^{32}+\frac{58\!\cdots\!84}{45\!\cdots\!93}a^{31}+\frac{10\!\cdots\!59}{45\!\cdots\!93}a^{30}+\frac{55\!\cdots\!48}{45\!\cdots\!93}a^{29}-\frac{22\!\cdots\!35}{45\!\cdots\!93}a^{28}-\frac{20\!\cdots\!95}{45\!\cdots\!93}a^{27}-\frac{18\!\cdots\!97}{45\!\cdots\!93}a^{26}+\frac{10\!\cdots\!53}{45\!\cdots\!93}a^{25}-\frac{13\!\cdots\!46}{45\!\cdots\!93}a^{24}+\frac{12\!\cdots\!06}{45\!\cdots\!93}a^{23}-\frac{42\!\cdots\!23}{45\!\cdots\!93}a^{22}+\frac{18\!\cdots\!00}{45\!\cdots\!93}a^{21}-\frac{21\!\cdots\!12}{45\!\cdots\!93}a^{20}+\frac{89\!\cdots\!93}{45\!\cdots\!93}a^{19}-\frac{20\!\cdots\!89}{45\!\cdots\!93}a^{18}-\frac{21\!\cdots\!52}{45\!\cdots\!93}a^{17}-\frac{99\!\cdots\!57}{45\!\cdots\!93}a^{16}+\frac{11\!\cdots\!28}{45\!\cdots\!93}a^{15}-\frac{13\!\cdots\!76}{45\!\cdots\!93}a^{14}+\frac{92\!\cdots\!94}{45\!\cdots\!93}a^{13}+\frac{88\!\cdots\!88}{45\!\cdots\!93}a^{12}+\frac{51\!\cdots\!16}{45\!\cdots\!93}a^{11}-\frac{16\!\cdots\!07}{45\!\cdots\!93}a^{10}+\frac{71\!\cdots\!76}{45\!\cdots\!93}a^{9}-\frac{51\!\cdots\!32}{45\!\cdots\!93}a^{8}-\frac{93\!\cdots\!74}{45\!\cdots\!93}a^{7}-\frac{11\!\cdots\!50}{45\!\cdots\!93}a^{6}+\frac{22\!\cdots\!30}{45\!\cdots\!93}a^{5}-\frac{12\!\cdots\!27}{45\!\cdots\!93}a^{4}+\frac{16\!\cdots\!69}{45\!\cdots\!93}a^{3}+\frac{68\!\cdots\!95}{45\!\cdots\!93}a^{2}+\frac{24\!\cdots\!97}{45\!\cdots\!93}a-\frac{28\!\cdots\!99}{45\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $22$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^46 - 21*x^45 + 257*x^44 - 2275*x^43 + 16384*x^42 - 101148*x^41 + 555868*x^40 - 2773061*x^39 + 12764350*x^38 - 54717566*x^37 + 220411975*x^36 - 838622105*x^35 + 3030581020*x^34 - 10433377545*x^33 + 34346625500*x^32 - 108311066940*x^31 + 328058481150*x^30 - 955269123060*x^29 + 2679603110905*x^28 - 7242985668834*x^27 + 18895590411056*x^26 - 47565631805041*x^25 + 115691372227157*x^24 - 271669498342240*x^23 + 616666273593665*x^22 - 1351191092366848*x^21 + 2861502035274188*x^20 - 5844226298666601*x^19 + 11528422276701890*x^18 - 21892211952456407*x^17 + 40102623357336934*x^16 - 70512951104599839*x^15 + 119377822272400223*x^14 - 193124835740771010*x^13 + 300080474989777953*x^12 - 442454098080721470*x^11 + 624685689856470240*x^10 - 827583193065916590*x^9 + 1046376694212400500*x^8 - 1217672042714811795*x^7 + 1349148741219481645*x^6 - 1325965235556309370*x^5 + 1244120066328799465*x^4 - 953228966874939950*x^3 + 714248269821476266*x^2 - 340555683118656924*x + 181351969023278929)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^46 - 21*x^45 + 257*x^44 - 2275*x^43 + 16384*x^42 - 101148*x^41 + 555868*x^40 - 2773061*x^39 + 12764350*x^38 - 54717566*x^37 + 220411975*x^36 - 838622105*x^35 + 3030581020*x^34 - 10433377545*x^33 + 34346625500*x^32 - 108311066940*x^31 + 328058481150*x^30 - 955269123060*x^29 + 2679603110905*x^28 - 7242985668834*x^27 + 18895590411056*x^26 - 47565631805041*x^25 + 115691372227157*x^24 - 271669498342240*x^23 + 616666273593665*x^22 - 1351191092366848*x^21 + 2861502035274188*x^20 - 5844226298666601*x^19 + 11528422276701890*x^18 - 21892211952456407*x^17 + 40102623357336934*x^16 - 70512951104599839*x^15 + 119377822272400223*x^14 - 193124835740771010*x^13 + 300080474989777953*x^12 - 442454098080721470*x^11 + 624685689856470240*x^10 - 827583193065916590*x^9 + 1046376694212400500*x^8 - 1217672042714811795*x^7 + 1349148741219481645*x^6 - 1325965235556309370*x^5 + 1244120066328799465*x^4 - 953228966874939950*x^3 + 714248269821476266*x^2 - 340555683118656924*x + 181351969023278929, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^46 - 21*x^45 + 257*x^44 - 2275*x^43 + 16384*x^42 - 101148*x^41 + 555868*x^40 - 2773061*x^39 + 12764350*x^38 - 54717566*x^37 + 220411975*x^36 - 838622105*x^35 + 3030581020*x^34 - 10433377545*x^33 + 34346625500*x^32 - 108311066940*x^31 + 328058481150*x^30 - 955269123060*x^29 + 2679603110905*x^28 - 7242985668834*x^27 + 18895590411056*x^26 - 47565631805041*x^25 + 115691372227157*x^24 - 271669498342240*x^23 + 616666273593665*x^22 - 1351191092366848*x^21 + 2861502035274188*x^20 - 5844226298666601*x^19 + 11528422276701890*x^18 - 21892211952456407*x^17 + 40102623357336934*x^16 - 70512951104599839*x^15 + 119377822272400223*x^14 - 193124835740771010*x^13 + 300080474989777953*x^12 - 442454098080721470*x^11 + 624685689856470240*x^10 - 827583193065916590*x^9 + 1046376694212400500*x^8 - 1217672042714811795*x^7 + 1349148741219481645*x^6 - 1325965235556309370*x^5 + 1244120066328799465*x^4 - 953228966874939950*x^3 + 714248269821476266*x^2 - 340555683118656924*x + 181351969023278929);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - 21*x^45 + 257*x^44 - 2275*x^43 + 16384*x^42 - 101148*x^41 + 555868*x^40 - 2773061*x^39 + 12764350*x^38 - 54717566*x^37 + 220411975*x^36 - 838622105*x^35 + 3030581020*x^34 - 10433377545*x^33 + 34346625500*x^32 - 108311066940*x^31 + 328058481150*x^30 - 955269123060*x^29 + 2679603110905*x^28 - 7242985668834*x^27 + 18895590411056*x^26 - 47565631805041*x^25 + 115691372227157*x^24 - 271669498342240*x^23 + 616666273593665*x^22 - 1351191092366848*x^21 + 2861502035274188*x^20 - 5844226298666601*x^19 + 11528422276701890*x^18 - 21892211952456407*x^17 + 40102623357336934*x^16 - 70512951104599839*x^15 + 119377822272400223*x^14 - 193124835740771010*x^13 + 300080474989777953*x^12 - 442454098080721470*x^11 + 624685689856470240*x^10 - 827583193065916590*x^9 + 1046376694212400500*x^8 - 1217672042714811795*x^7 + 1349148741219481645*x^6 - 1325965235556309370*x^5 + 1244120066328799465*x^4 - 953228966874939950*x^3 + 714248269821476266*x^2 - 340555683118656924*x + 181351969023278929);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{46}$ (as 46T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23^{2}$ R R $46$ $46$ $46$ $23^{2}$ $23^{2}$ $23^{2}$ $46$ $23^{2}$ $46$ $46$ $46$ R $23^{2}$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $46$$2$$23$$23$
\(5\) Copy content Toggle raw display Deg $46$$2$$23$$23$
\(47\) Copy content Toggle raw display 47.23.22.1$x^{23} + 47$$23$$1$$22$$C_{23}$$[\ ]_{23}$
47.23.22.1$x^{23} + 47$$23$$1$$22$$C_{23}$$[\ ]_{23}$