magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 276, 0, 12650, 0, 230230, 0, 2220075, 0, 13123110, 0, 51895935, 0, 145422675, 0, 300540195, 0, 471435600, 0, 573166440, 0, 548354040, 0, 417225900, 0, 254186856, 0, 124403620, 0, 48903492, 0, 15380937, 0, 3838380, 0, 749398, 0, 111930, 0, 12341, 0, 946, 0, 45, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1)
gp: K = bnfinit(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1, 1)
\( x^{46} + 45 x^{44} + 946 x^{42} + 12341 x^{40} + 111930 x^{38} + 749398 x^{36} + 3838380 x^{34} + 15380937 x^{32} + 48903492 x^{30} + 124403620 x^{28} + 254186856 x^{26} + 417225900 x^{24} + 548354040 x^{22} + 573166440 x^{20} + 471435600 x^{18} + 300540195 x^{16} + 145422675 x^{14} + 51895935 x^{12} + 13123110 x^{10} + 2220075 x^{8} + 230230 x^{6} + 12650 x^{4} + 276 x^{2} + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $46$ |
|
| Signature: | | $[0, 23]$ |
|
| Discriminant: | | \(-2628364239485334411197227624389642263541714240820003570059378902799863859937013225488384=-\,2^{46}\cdot 47^{44}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $79.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(188=2^{2}\cdot 47\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{188}(1,·)$, $\chi_{188}(3,·)$, $\chi_{188}(7,·)$, $\chi_{188}(9,·)$, $\chi_{188}(143,·)$, $\chi_{188}(115,·)$, $\chi_{188}(145,·)$, $\chi_{188}(131,·)$, $\chi_{188}(21,·)$, $\chi_{188}(153,·)$, $\chi_{188}(25,·)$, $\chi_{188}(155,·)$, $\chi_{188}(157,·)$, $\chi_{188}(159,·)$, $\chi_{188}(27,·)$, $\chi_{188}(37,·)$, $\chi_{188}(177,·)$, $\chi_{188}(169,·)$, $\chi_{188}(173,·)$, $\chi_{188}(175,·)$, $\chi_{188}(49,·)$, $\chi_{188}(51,·)$, $\chi_{188}(53,·)$, $\chi_{188}(55,·)$, $\chi_{188}(59,·)$, $\chi_{188}(61,·)$, $\chi_{188}(63,·)$, $\chi_{188}(65,·)$, $\chi_{188}(71,·)$, $\chi_{188}(75,·)$, $\chi_{188}(79,·)$, $\chi_{188}(81,·)$, $\chi_{188}(83,·)$, $\chi_{188}(89,·)$, $\chi_{188}(95,·)$, $\chi_{188}(97,·)$, $\chi_{188}(101,·)$, $\chi_{188}(165,·)$, $\chi_{188}(17,·)$, $\chi_{188}(103,·)$, $\chi_{188}(111,·)$, $\chi_{188}(147,·)$, $\chi_{188}(119,·)$, $\chi_{188}(121,·)$, $\chi_{188}(183,·)$, $\chi_{188}(149,·)$$\rbrace$
|
| This is a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$
Not computed
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $22$
|
|
| Torsion generator: | | \( -a^{45} - 44 a^{43} - 903 a^{41} - 11480 a^{39} - 101270 a^{37} - 658008 a^{35} - 3262623 a^{33} - 12620256 a^{31} - 38608020 a^{29} - 94143280 a^{27} - 183579396 a^{25} - 286097760 a^{23} - 354817320 a^{21} - 347373600 a^{19} - 265182525 a^{17} - 155117520 a^{15} - 67863915 a^{13} - 21474180 a^{11} - 4686825 a^{9} - 657800 a^{7} - 53130 a^{5} - 2024 a^{3} - 23 a \) (order $4$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Not computed
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | Not computed
|
|
$C_{46}$ (as 46T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$46$ |
$23^{2}$ |
$46$ |
$46$ |
$23^{2}$ |
$23^{2}$ |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$23^{2}$ |
$46$ |
R |
$23^{2}$ |
$46$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])