Properties

Label 46.0.262...384.1
Degree $46$
Signature $[0, 23]$
Discriminant $-2.628\times 10^{87}$
Root discriminant \(79.51\)
Ramified primes $2,47$
Class number not computed
Class group not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1)
 
gp: K = bnfinit(y^46 + 45*y^44 + 946*y^42 + 12341*y^40 + 111930*y^38 + 749398*y^36 + 3838380*y^34 + 15380937*y^32 + 48903492*y^30 + 124403620*y^28 + 254186856*y^26 + 417225900*y^24 + 548354040*y^22 + 573166440*y^20 + 471435600*y^18 + 300540195*y^16 + 145422675*y^14 + 51895935*y^12 + 13123110*y^10 + 2220075*y^8 + 230230*y^6 + 12650*y^4 + 276*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1)
 

\( x^{46} + 45 x^{44} + 946 x^{42} + 12341 x^{40} + 111930 x^{38} + 749398 x^{36} + 3838380 x^{34} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $46$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 23]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-262\!\cdots\!384\) \(\medspace = -\,2^{46}\cdot 47^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(79.51\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 47^{22/23}\approx 79.51113386386908$
Ramified primes:   \(2\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Gal(K/\Q) }$:  $46$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(188=2^{2}\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{188}(1,·)$, $\chi_{188}(3,·)$, $\chi_{188}(7,·)$, $\chi_{188}(9,·)$, $\chi_{188}(143,·)$, $\chi_{188}(115,·)$, $\chi_{188}(145,·)$, $\chi_{188}(131,·)$, $\chi_{188}(21,·)$, $\chi_{188}(153,·)$, $\chi_{188}(25,·)$, $\chi_{188}(155,·)$, $\chi_{188}(157,·)$, $\chi_{188}(159,·)$, $\chi_{188}(27,·)$, $\chi_{188}(37,·)$, $\chi_{188}(177,·)$, $\chi_{188}(169,·)$, $\chi_{188}(173,·)$, $\chi_{188}(175,·)$, $\chi_{188}(49,·)$, $\chi_{188}(51,·)$, $\chi_{188}(53,·)$, $\chi_{188}(55,·)$, $\chi_{188}(59,·)$, $\chi_{188}(61,·)$, $\chi_{188}(63,·)$, $\chi_{188}(65,·)$, $\chi_{188}(71,·)$, $\chi_{188}(75,·)$, $\chi_{188}(79,·)$, $\chi_{188}(81,·)$, $\chi_{188}(83,·)$, $\chi_{188}(89,·)$, $\chi_{188}(95,·)$, $\chi_{188}(97,·)$, $\chi_{188}(101,·)$, $\chi_{188}(165,·)$, $\chi_{188}(17,·)$, $\chi_{188}(103,·)$, $\chi_{188}(111,·)$, $\chi_{188}(147,·)$, $\chi_{188}(119,·)$, $\chi_{188}(121,·)$, $\chi_{188}(183,·)$, $\chi_{188}(149,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4194304}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $22$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -a^{45} - 44 a^{43} - 903 a^{41} - 11480 a^{39} - 101270 a^{37} - 658008 a^{35} - 3262623 a^{33} - 12620256 a^{31} - 38608020 a^{29} - 94143280 a^{27} - 183579396 a^{25} - 286097760 a^{23} - 354817320 a^{21} - 347373600 a^{19} - 265182525 a^{17} - 155117520 a^{15} - 67863915 a^{13} - 21474180 a^{11} - 4686825 a^{9} - 657800 a^{7} - 53130 a^{5} - 2024 a^{3} - 23 a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 + 45*x^44 + 946*x^42 + 12341*x^40 + 111930*x^38 + 749398*x^36 + 3838380*x^34 + 15380937*x^32 + 48903492*x^30 + 124403620*x^28 + 254186856*x^26 + 417225900*x^24 + 548354040*x^22 + 573166440*x^20 + 471435600*x^18 + 300540195*x^16 + 145422675*x^14 + 51895935*x^12 + 13123110*x^10 + 2220075*x^8 + 230230*x^6 + 12650*x^4 + 276*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{46}$ (as 46T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $46$ $23^{2}$ $46$ $46$ $23^{2}$ $23^{2}$ $46$ $46$ $23^{2}$ $46$ $23^{2}$ $23^{2}$ $46$ R $23^{2}$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $46$$2$$23$$46$
\(47\) Copy content Toggle raw display Deg $46$$23$$2$$44$