Properties

Label 46.0.25794293435...5216.1
Degree $46$
Signature $[0, 23]$
Discriminant $-\,2^{46}\cdot 23^{23}\cdot 47^{45}$
Root discriminant $414.61$
Ramified primes $2, 23, 47$
Class number Not computed
Class group Not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![981381995992851865614686546796649, 0, 3925527983971407462458746187186596, 0, 4693566067791900226852848702070930, 0, 2652885168751943606482044918561830, 0, 865071250679981610809362473444075, 0, 181904310419664117371771081372430, 0, 26464339475770532125993451637795, 0, 2794371248994404013303656384115, 0, 221548615649172696706939508715, 0, 13519366324892307960759085200, 0, 646578389451371250297173640, 0, 24556422764865620607608760, 0, 747369388495910192405484, 0, 18330129929665578854984, 0, 363147787212265162580, 0, 5806290005918405124, 0, 74586729325038801, 0, 763035594118044, 0, 6126999482734, 0, 37747752490, 0, 172126549, 0, 546986, 0, 1081, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^46 + 1081*x^44 + 546986*x^42 + 172126549*x^40 + 37747752490*x^38 + 6126999482734*x^36 + 763035594118044*x^34 + 74586729325038801*x^32 + 5806290005918405124*x^30 + 363147787212265162580*x^28 + 18330129929665578854984*x^26 + 747369388495910192405484*x^24 + 24556422764865620607608760*x^22 + 646578389451371250297173640*x^20 + 13519366324892307960759085200*x^18 + 221548615649172696706939508715*x^16 + 2794371248994404013303656384115*x^14 + 26464339475770532125993451637795*x^12 + 181904310419664117371771081372430*x^10 + 865071250679981610809362473444075*x^8 + 2652885168751943606482044918561830*x^6 + 4693566067791900226852848702070930*x^4 + 3925527983971407462458746187186596*x^2 + 981381995992851865614686546796649)
 
gp: K = bnfinit(x^46 + 1081*x^44 + 546986*x^42 + 172126549*x^40 + 37747752490*x^38 + 6126999482734*x^36 + 763035594118044*x^34 + 74586729325038801*x^32 + 5806290005918405124*x^30 + 363147787212265162580*x^28 + 18330129929665578854984*x^26 + 747369388495910192405484*x^24 + 24556422764865620607608760*x^22 + 646578389451371250297173640*x^20 + 13519366324892307960759085200*x^18 + 221548615649172696706939508715*x^16 + 2794371248994404013303656384115*x^14 + 26464339475770532125993451637795*x^12 + 181904310419664117371771081372430*x^10 + 865071250679981610809362473444075*x^8 + 2652885168751943606482044918561830*x^6 + 4693566067791900226852848702070930*x^4 + 3925527983971407462458746187186596*x^2 + 981381995992851865614686546796649, 1)
 

Normalized defining polynomial

\( x^{46} + 1081 x^{44} + 546986 x^{42} + 172126549 x^{40} + 37747752490 x^{38} + 6126999482734 x^{36} + 763035594118044 x^{34} + 74586729325038801 x^{32} + 5806290005918405124 x^{30} + 363147787212265162580 x^{28} + 18330129929665578854984 x^{26} + 747369388495910192405484 x^{24} + 24556422764865620607608760 x^{22} + 646578389451371250297173640 x^{20} + 13519366324892307960759085200 x^{18} + 221548615649172696706939508715 x^{16} + 2794371248994404013303656384115 x^{14} + 26464339475770532125993451637795 x^{12} + 181904310419664117371771081372430 x^{10} + 865071250679981610809362473444075 x^{8} + 2652885168751943606482044918561830 x^{6} + 4693566067791900226852848702070930 x^{4} + 3925527983971407462458746187186596 x^{2} + 981381995992851865614686546796649 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $46$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 23]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2579429343542351596390826632891502881531178841973772779681657383147657295402368825407289691573406771522895573153759625216=-\,2^{46}\cdot 23^{23}\cdot 47^{45}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $414.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 23, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4324=2^{2}\cdot 23\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{4324}(1,·)$, $\chi_{4324}(3587,·)$, $\chi_{4324}(3589,·)$, $\chi_{4324}(1381,·)$, $\chi_{4324}(4233,·)$, $\chi_{4324}(1933,·)$, $\chi_{4324}(275,·)$, $\chi_{4324}(277,·)$, $\chi_{4324}(919,·)$, $\chi_{4324}(921,·)$, $\chi_{4324}(3679,·)$, $\chi_{4324}(1565,·)$, $\chi_{4324}(645,·)$, $\chi_{4324}(2851,·)$, $\chi_{4324}(553,·)$, $\chi_{4324}(1195,·)$, $\chi_{4324}(1841,·)$, $\chi_{4324}(91,·)$, $\chi_{4324}(2483,·)$, $\chi_{4324}(3129,·)$, $\chi_{4324}(2207,·)$, $\chi_{4324}(1473,·)$, $\chi_{4324}(2943,·)$, $\chi_{4324}(2117,·)$, $\chi_{4324}(2759,·)$, $\chi_{4324}(3403,·)$, $\chi_{4324}(3405,·)$, $\chi_{4324}(4047,·)$, $\chi_{4324}(1105,·)$, $\chi_{4324}(2391,·)$, $\chi_{4324}(1103,·)$, $\chi_{4324}(735,·)$, $\chi_{4324}(737,·)$, $\chi_{4324}(4323,·)$, $\chi_{4324}(3771,·)$, $\chi_{4324}(4049,·)$, $\chi_{4324}(2025,·)$, $\chi_{4324}(2667,·)$, $\chi_{4324}(2669,·)$, $\chi_{4324}(367,·)$, $\chi_{4324}(3219,·)$, $\chi_{4324}(3957,·)$, $\chi_{4324}(1655,·)$, $\chi_{4324}(1657,·)$, $\chi_{4324}(2299,·)$, $\chi_{4324}(3221,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{23} a^{2}$, $\frac{1}{23} a^{3}$, $\frac{1}{529} a^{4}$, $\frac{1}{529} a^{5}$, $\frac{1}{12167} a^{6}$, $\frac{1}{12167} a^{7}$, $\frac{1}{279841} a^{8}$, $\frac{1}{279841} a^{9}$, $\frac{1}{6436343} a^{10}$, $\frac{1}{6436343} a^{11}$, $\frac{1}{148035889} a^{12}$, $\frac{1}{148035889} a^{13}$, $\frac{1}{3404825447} a^{14}$, $\frac{1}{3404825447} a^{15}$, $\frac{1}{78310985281} a^{16}$, $\frac{1}{78310985281} a^{17}$, $\frac{1}{1801152661463} a^{18}$, $\frac{1}{1801152661463} a^{19}$, $\frac{1}{41426511213649} a^{20}$, $\frac{1}{41426511213649} a^{21}$, $\frac{1}{952809757913927} a^{22}$, $\frac{1}{952809757913927} a^{23}$, $\frac{1}{21914624432020321} a^{24}$, $\frac{1}{21914624432020321} a^{25}$, $\frac{1}{504036361936467383} a^{26}$, $\frac{1}{504036361936467383} a^{27}$, $\frac{1}{11592836324538749809} a^{28}$, $\frac{1}{11592836324538749809} a^{29}$, $\frac{1}{266635235464391245607} a^{30}$, $\frac{1}{266635235464391245607} a^{31}$, $\frac{1}{6132610415680998648961} a^{32}$, $\frac{1}{6132610415680998648961} a^{33}$, $\frac{1}{141050039560662968926103} a^{34}$, $\frac{1}{141050039560662968926103} a^{35}$, $\frac{1}{3244150909895248285300369} a^{36}$, $\frac{1}{3244150909895248285300369} a^{37}$, $\frac{1}{74615470927590710561908487} a^{38}$, $\frac{1}{74615470927590710561908487} a^{39}$, $\frac{1}{1716155831334586342923895201} a^{40}$, $\frac{1}{1716155831334586342923895201} a^{41}$, $\frac{1}{39471584120695485887249589623} a^{42}$, $\frac{1}{39471584120695485887249589623} a^{43}$, $\frac{1}{907846434775996175406740561329} a^{44}$, $\frac{1}{907846434775996175406740561329} a^{45}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $22$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{46}$ (as 46T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1081}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $46$ $23^{2}$ $23^{2}$ $46$ $46$ $46$ $46$ R $46$ $23^{2}$ $46$ $46$ $46$ R $46$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
23Data not computed
47Data not computed