magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 + x^44 - x^43 + x^42 - x^41 + x^40 - x^39 + x^38 - x^37 + x^36 - x^35 + x^34 - x^33 + x^32 - x^31 + x^30 - x^29 + x^28 - x^27 + x^26 - x^25 + x^24 - x^23 + x^22 - x^21 + x^20 - x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
gp: K = bnfinit(x^46 - x^45 + x^44 - x^43 + x^42 - x^41 + x^40 - x^39 + x^38 - x^37 + x^36 - x^35 + x^34 - x^33 + x^32 - x^31 + x^30 - x^29 + x^28 - x^27 + x^26 - x^25 + x^24 - x^23 + x^22 - x^21 + x^20 - x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1, 1)
\( x^{46} - x^{45} + x^{44} - x^{43} + x^{42} - x^{41} + x^{40} - x^{39} + x^{38} - x^{37} + x^{36} - x^{35} + x^{34} - x^{33} + x^{32} - x^{31} + x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $46$ |
|
| Signature: | | $[0, 23]$ |
|
| Discriminant: | | \(-1755511210260049172778020908173078657717675374080672665297567056535308458607=-\,47^{45}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $43.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(47\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{47}(1,·)$, $\chi_{47}(2,·)$, $\chi_{47}(3,·)$, $\chi_{47}(4,·)$, $\chi_{47}(5,·)$, $\chi_{47}(6,·)$, $\chi_{47}(7,·)$, $\chi_{47}(8,·)$, $\chi_{47}(9,·)$, $\chi_{47}(10,·)$, $\chi_{47}(11,·)$, $\chi_{47}(12,·)$, $\chi_{47}(13,·)$, $\chi_{47}(14,·)$, $\chi_{47}(15,·)$, $\chi_{47}(16,·)$, $\chi_{47}(17,·)$, $\chi_{47}(18,·)$, $\chi_{47}(19,·)$, $\chi_{47}(20,·)$, $\chi_{47}(21,·)$, $\chi_{47}(22,·)$, $\chi_{47}(23,·)$, $\chi_{47}(24,·)$, $\chi_{47}(25,·)$, $\chi_{47}(26,·)$, $\chi_{47}(27,·)$, $\chi_{47}(28,·)$, $\chi_{47}(29,·)$, $\chi_{47}(30,·)$, $\chi_{47}(31,·)$, $\chi_{47}(32,·)$, $\chi_{47}(33,·)$, $\chi_{47}(34,·)$, $\chi_{47}(35,·)$, $\chi_{47}(36,·)$, $\chi_{47}(37,·)$, $\chi_{47}(38,·)$, $\chi_{47}(39,·)$, $\chi_{47}(40,·)$, $\chi_{47}(41,·)$, $\chi_{47}(42,·)$, $\chi_{47}(43,·)$, $\chi_{47}(44,·)$, $\chi_{47}(45,·)$, $\chi_{47}(46,·)$$\rbrace$
|
| This is a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$
$C_{695}$, which has order $695$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $22$
|
|
| Torsion generator: | | \( a \) (order $94$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 286117566502019100 \)
(assuming GRH)
|
|
$C_{46}$ (as 46T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
$23^{2}$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$46$ |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$46$ |
R |
$23^{2}$ |
$23^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])