Normalized defining polynomial
\( x^{46} - 3 x + 5 \)
Invariants
| Degree: | $46$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 23]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1395180620453034809072318730770896284090869954075666943655311932200146112362517669680528342723846435546875=-\,5^{43}\cdot 7\cdot 131063\cdot 210671\cdot 2644627\cdot 2978335879\cdot 603182222032259\cdot 1336443840257415421348497754512119\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $193.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 131063, 210671, 2644627, 2978335879, 603182222032259, 1336443840257415421348497754512119$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $\frac{1}{5} a^{44} + \frac{1}{5} a^{43} + \frac{2}{5} a^{42} - \frac{2}{5} a^{41} - \frac{2}{5} a^{39} - \frac{2}{5} a^{38} + \frac{1}{5} a^{37} - \frac{1}{5} a^{36} - \frac{1}{5} a^{34} - \frac{1}{5} a^{33} - \frac{2}{5} a^{32} + \frac{2}{5} a^{31} + \frac{2}{5} a^{29} + \frac{2}{5} a^{28} - \frac{1}{5} a^{27} + \frac{1}{5} a^{26} + \frac{1}{5} a^{24} + \frac{1}{5} a^{23} + \frac{2}{5} a^{22} - \frac{2}{5} a^{21} - \frac{2}{5} a^{19} - \frac{2}{5} a^{18} + \frac{1}{5} a^{17} - \frac{1}{5} a^{16} - \frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{45} + \frac{1}{5} a^{43} + \frac{1}{5} a^{42} + \frac{2}{5} a^{41} - \frac{2}{5} a^{40} - \frac{2}{5} a^{38} - \frac{2}{5} a^{37} + \frac{1}{5} a^{36} - \frac{1}{5} a^{35} - \frac{1}{5} a^{33} - \frac{1}{5} a^{32} - \frac{2}{5} a^{31} + \frac{2}{5} a^{30} + \frac{2}{5} a^{28} + \frac{2}{5} a^{27} - \frac{1}{5} a^{26} + \frac{1}{5} a^{25} + \frac{1}{5} a^{23} + \frac{1}{5} a^{22} + \frac{2}{5} a^{21} - \frac{2}{5} a^{20} - \frac{2}{5} a^{18} - \frac{2}{5} a^{17} + \frac{1}{5} a^{16} - \frac{1}{5} a^{15} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$
Class group and class number
Not computed
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{46}$ (as 46T56):
| A non-solvable group of order 5502622159812088949850305428800254892961651752960000000000 |
| The 105558 conjugacy class representatives for $S_{46}$ are not computed |
| Character table for $S_{46}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $46$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | R | $17{,}\,15{,}\,{\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $24{,}\,17{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $27{,}\,18{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $32{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $23{,}\,{\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $20{,}\,{\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $40{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $26{,}\,{\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.8.0.1}{8} }$ | $23{,}\,{\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $23{,}\,{\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $44{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.13.0.1}{13} }{,}\,{\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 131063 | Data not computed | ||||||
| 210671 | Data not computed | ||||||
| 2644627 | Data not computed | ||||||
| 2978335879 | Data not computed | ||||||
| 603182222032259 | Data not computed | ||||||
| 1336443840257415421348497754512119 | Data not computed | ||||||