magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4424729404869, 0, 135691701749316, 0, 1243840599368730, 0, 5389975930597830, 0, 13474939826494575, 0, 21723236326348830, 0, 24229763594773695, 0, 19614570529102515, 0, 11922582086317215, 0, 5577816180733200, 0, 2045199266268840, 0, 595505978715960, 0, 138951395033724, 0, 26127612741384, 0, 3968479767780, 0, 486458810244, 0, 47908822221, 0, 3757554684, 0, 231320934, 0, 10926090, 0, 381969, 0, 9306, 0, 141, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^46 + 141*x^44 + 9306*x^42 + 381969*x^40 + 10926090*x^38 + 231320934*x^36 + 3757554684*x^34 + 47908822221*x^32 + 486458810244*x^30 + 3968479767780*x^28 + 26127612741384*x^26 + 138951395033724*x^24 + 595505978715960*x^22 + 2045199266268840*x^20 + 5577816180733200*x^18 + 11922582086317215*x^16 + 19614570529102515*x^14 + 24229763594773695*x^12 + 21723236326348830*x^10 + 13474939826494575*x^8 + 5389975930597830*x^6 + 1243840599368730*x^4 + 135691701749316*x^2 + 4424729404869)
gp: K = bnfinit(x^46 + 141*x^44 + 9306*x^42 + 381969*x^40 + 10926090*x^38 + 231320934*x^36 + 3757554684*x^34 + 47908822221*x^32 + 486458810244*x^30 + 3968479767780*x^28 + 26127612741384*x^26 + 138951395033724*x^24 + 595505978715960*x^22 + 2045199266268840*x^20 + 5577816180733200*x^18 + 11922582086317215*x^16 + 19614570529102515*x^14 + 24229763594773695*x^12 + 21723236326348830*x^10 + 13474939826494575*x^8 + 5389975930597830*x^6 + 1243840599368730*x^4 + 135691701749316*x^2 + 4424729404869, 1)
\( x^{46} + 141 x^{44} + 9306 x^{42} + 381969 x^{40} + 10926090 x^{38} + 231320934 x^{36} + 3757554684 x^{34} + 47908822221 x^{32} + 486458810244 x^{30} + 3968479767780 x^{28} + 26127612741384 x^{26} + 138951395033724 x^{24} + 595505978715960 x^{22} + 2045199266268840 x^{20} + 5577816180733200 x^{18} + 11922582086317215 x^{16} + 19614570529102515 x^{14} + 24229763594773695 x^{12} + 21723236326348830 x^{10} + 13474939826494575 x^{8} + 5389975930597830 x^{6} + 1243840599368730 x^{4} + 135691701749316 x^{2} + 4424729404869 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $46$ |
|
| Signature: | | $[0, 23]$ |
|
| Discriminant: | | \(-11629800537156905520110155516248308482128739308939556543099290959577415814793321701040599438192541696=-\,2^{46}\cdot 3^{23}\cdot 47^{45}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $149.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(564=2^{2}\cdot 3\cdot 47\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{564}(1,·)$, $\chi_{564}(515,·)$, $\chi_{564}(385,·)$, $\chi_{564}(11,·)$, $\chi_{564}(397,·)$, $\chi_{564}(527,·)$, $\chi_{564}(145,·)$, $\chi_{564}(275,·)$, $\chi_{564}(277,·)$, $\chi_{564}(23,·)$, $\chi_{564}(25,·)$, $\chi_{564}(539,·)$, $\chi_{564}(541,·)$, $\chi_{564}(287,·)$, $\chi_{564}(289,·)$, $\chi_{564}(419,·)$, $\chi_{564}(503,·)$, $\chi_{564}(37,·)$, $\chi_{564}(167,·)$, $\chi_{564}(553,·)$, $\chi_{564}(157,·)$, $\chi_{564}(49,·)$, $\chi_{564}(179,·)$, $\chi_{564}(311,·)$, $\chi_{564}(443,·)$, $\chi_{564}(61,·)$, $\chi_{564}(395,·)$, $\chi_{564}(407,·)$, $\chi_{564}(457,·)$, $\chi_{564}(203,·)$, $\chi_{564}(205,·)$, $\chi_{564}(337,·)$, $\chi_{564}(35,·)$, $\chi_{564}(563,·)$, $\chi_{564}(107,·)$, $\chi_{564}(97,·)$, $\chi_{564}(227,·)$, $\chi_{564}(529,·)$, $\chi_{564}(361,·)$, $\chi_{564}(323,·)$, $\chi_{564}(359,·)$, $\chi_{564}(241,·)$, $\chi_{564}(467,·)$, $\chi_{564}(169,·)$, $\chi_{564}(121,·)$, $\chi_{564}(253,·)$$\rbrace$
|
| This is a CM field. |
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{2187} a^{14}$, $\frac{1}{2187} a^{15}$, $\frac{1}{6561} a^{16}$, $\frac{1}{6561} a^{17}$, $\frac{1}{19683} a^{18}$, $\frac{1}{19683} a^{19}$, $\frac{1}{59049} a^{20}$, $\frac{1}{59049} a^{21}$, $\frac{1}{177147} a^{22}$, $\frac{1}{177147} a^{23}$, $\frac{1}{531441} a^{24}$, $\frac{1}{531441} a^{25}$, $\frac{1}{1594323} a^{26}$, $\frac{1}{1594323} a^{27}$, $\frac{1}{4782969} a^{28}$, $\frac{1}{4782969} a^{29}$, $\frac{1}{14348907} a^{30}$, $\frac{1}{14348907} a^{31}$, $\frac{1}{43046721} a^{32}$, $\frac{1}{43046721} a^{33}$, $\frac{1}{129140163} a^{34}$, $\frac{1}{129140163} a^{35}$, $\frac{1}{387420489} a^{36}$, $\frac{1}{387420489} a^{37}$, $\frac{1}{1162261467} a^{38}$, $\frac{1}{1162261467} a^{39}$, $\frac{1}{3486784401} a^{40}$, $\frac{1}{3486784401} a^{41}$, $\frac{1}{10460353203} a^{42}$, $\frac{1}{10460353203} a^{43}$, $\frac{1}{31381059609} a^{44}$, $\frac{1}{31381059609} a^{45}$
Not computed
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $22$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Not computed
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | Not computed
|
|
$C_{46}$ (as 46T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
R |
$23^{2}$ |
$46$ |
$46$ |
$46$ |
$46$ |
$23^{2}$ |
$46$ |
$23^{2}$ |
$23^{2}$ |
$23^{2}$ |
$23^{2}$ |
$23^{2}$ |
R |
$46$ |
$23^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])