Normalized defining polynomial
\( x^{46} + 2 \)
Invariants
| Degree: | $46$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 23]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1079468720061366162593727471597924323721357543409917117883493186123315004681540942348419072=-\,2^{91}\cdot 23^{46}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $a^{44}$, $a^{45}$
Class group and class number
Not computed
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
46T6:
| A solvable group of order 1012 |
| The 46 conjugacy class representatives for t46n6 |
| Character table for t46n6 is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 23.1.87579030453634096837343451956922810368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 46 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $22^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $22^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $22^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $22^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $22^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | $22^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $22^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | $22^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $46$ | $22^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 23 | Data not computed | ||||||