Properties

Label 45.45.992...241.1
Degree $45$
Signature $[45, 0]$
Discriminant $9.929\times 10^{127}$
Root discriminant \(698.84\)
Ramified prime $811$
Class number not computed
Class group not computed
Galois group $C_{45}$ (as 45T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 396*x^43 + 829*x^42 + 69093*x^41 - 213329*x^40 - 6974865*x^39 + 28148607*x^38 + 450159883*x^37 - 2263089158*x^36 - 19342390441*x^35 + 120399126257*x^34 + 554492360509*x^33 - 4434413326456*x^32 - 10046622781109*x^31 + 116018246394393*x^30 + 86886702429318*x^29 - 2185646177028281*x^28 + 693994919431743*x^27 + 29756816334260440*x^26 - 33973753215967284*x^25 - 290582689767894657*x^24 + 543184152125443033*x^23 + 1984489268632473104*x^22 - 5275691290270373630*x^21 - 8880531728704621017*x^20 + 34163102478237698853*x^19 + 20979649586488016898*x^18 - 149269365665132134938*x^17 + 10063198266998551730*x^16 + 427685059470653411785*x^15 - 241034540985719055340*x^14 - 743760671890407982334*x^13 + 747995661858071416101*x^12 + 642020392083923396842*x^11 - 1065427764689162633315*x^10 - 59930805542863649405*x^9 + 666581021324279560724*x^8 - 231175789721089989336*x^7 - 115726943075772621725*x^6 + 74801496316603079673*x^5 - 1106196938800865215*x^4 - 5699180925312701810*x^3 + 720276517742393070*x^2 + 88437835208003944*x - 13311721526413589)
 
gp: K = bnfinit(y^45 - y^44 - 396*y^43 + 829*y^42 + 69093*y^41 - 213329*y^40 - 6974865*y^39 + 28148607*y^38 + 450159883*y^37 - 2263089158*y^36 - 19342390441*y^35 + 120399126257*y^34 + 554492360509*y^33 - 4434413326456*y^32 - 10046622781109*y^31 + 116018246394393*y^30 + 86886702429318*y^29 - 2185646177028281*y^28 + 693994919431743*y^27 + 29756816334260440*y^26 - 33973753215967284*y^25 - 290582689767894657*y^24 + 543184152125443033*y^23 + 1984489268632473104*y^22 - 5275691290270373630*y^21 - 8880531728704621017*y^20 + 34163102478237698853*y^19 + 20979649586488016898*y^18 - 149269365665132134938*y^17 + 10063198266998551730*y^16 + 427685059470653411785*y^15 - 241034540985719055340*y^14 - 743760671890407982334*y^13 + 747995661858071416101*y^12 + 642020392083923396842*y^11 - 1065427764689162633315*y^10 - 59930805542863649405*y^9 + 666581021324279560724*y^8 - 231175789721089989336*y^7 - 115726943075772621725*y^6 + 74801496316603079673*y^5 - 1106196938800865215*y^4 - 5699180925312701810*y^3 + 720276517742393070*y^2 + 88437835208003944*y - 13311721526413589, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - x^44 - 396*x^43 + 829*x^42 + 69093*x^41 - 213329*x^40 - 6974865*x^39 + 28148607*x^38 + 450159883*x^37 - 2263089158*x^36 - 19342390441*x^35 + 120399126257*x^34 + 554492360509*x^33 - 4434413326456*x^32 - 10046622781109*x^31 + 116018246394393*x^30 + 86886702429318*x^29 - 2185646177028281*x^28 + 693994919431743*x^27 + 29756816334260440*x^26 - 33973753215967284*x^25 - 290582689767894657*x^24 + 543184152125443033*x^23 + 1984489268632473104*x^22 - 5275691290270373630*x^21 - 8880531728704621017*x^20 + 34163102478237698853*x^19 + 20979649586488016898*x^18 - 149269365665132134938*x^17 + 10063198266998551730*x^16 + 427685059470653411785*x^15 - 241034540985719055340*x^14 - 743760671890407982334*x^13 + 747995661858071416101*x^12 + 642020392083923396842*x^11 - 1065427764689162633315*x^10 - 59930805542863649405*x^9 + 666581021324279560724*x^8 - 231175789721089989336*x^7 - 115726943075772621725*x^6 + 74801496316603079673*x^5 - 1106196938800865215*x^4 - 5699180925312701810*x^3 + 720276517742393070*x^2 + 88437835208003944*x - 13311721526413589);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - x^44 - 396*x^43 + 829*x^42 + 69093*x^41 - 213329*x^40 - 6974865*x^39 + 28148607*x^38 + 450159883*x^37 - 2263089158*x^36 - 19342390441*x^35 + 120399126257*x^34 + 554492360509*x^33 - 4434413326456*x^32 - 10046622781109*x^31 + 116018246394393*x^30 + 86886702429318*x^29 - 2185646177028281*x^28 + 693994919431743*x^27 + 29756816334260440*x^26 - 33973753215967284*x^25 - 290582689767894657*x^24 + 543184152125443033*x^23 + 1984489268632473104*x^22 - 5275691290270373630*x^21 - 8880531728704621017*x^20 + 34163102478237698853*x^19 + 20979649586488016898*x^18 - 149269365665132134938*x^17 + 10063198266998551730*x^16 + 427685059470653411785*x^15 - 241034540985719055340*x^14 - 743760671890407982334*x^13 + 747995661858071416101*x^12 + 642020392083923396842*x^11 - 1065427764689162633315*x^10 - 59930805542863649405*x^9 + 666581021324279560724*x^8 - 231175789721089989336*x^7 - 115726943075772621725*x^6 + 74801496316603079673*x^5 - 1106196938800865215*x^4 - 5699180925312701810*x^3 + 720276517742393070*x^2 + 88437835208003944*x - 13311721526413589)
 

\( x^{45} - x^{44} - 396 x^{43} + 829 x^{42} + 69093 x^{41} - 213329 x^{40} - 6974865 x^{39} + \cdots - 13\!\cdots\!89 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $45$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[45, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(992\!\cdots\!241\) \(\medspace = 811^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(698.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $811^{44/45}\approx 698.837089551728$
Ramified primes:   \(811\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $45$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(811\)
Dirichlet character group:    $\lbrace$$\chi_{811}(1,·)$, $\chi_{811}(130,·)$, $\chi_{811}(773,·)$, $\chi_{811}(276,·)$, $\chi_{811}(662,·)$, $\chi_{811}(537,·)$, $\chi_{811}(796,·)$, $\chi_{811}(797,·)$, $\chi_{811}(803,·)$, $\chi_{811}(680,·)$, $\chi_{811}(41,·)$, $\chi_{811}(299,·)$, $\chi_{811}(304,·)$, $\chi_{811}(306,·)$, $\chi_{811}(54,·)$, $\chi_{811}(55,·)$, $\chi_{811}(570,·)$, $\chi_{811}(59,·)$, $\chi_{811}(191,·)$, $\chi_{811}(64,·)$, $\chi_{811}(196,·)$, $\chi_{811}(582,·)$, $\chi_{811}(737,·)$, $\chi_{811}(464,·)$, $\chi_{811}(210,·)$, $\chi_{811}(339,·)$, $\chi_{811}(212,·)$, $\chi_{811}(726,·)$, $\chi_{811}(343,·)$, $\chi_{811}(592,·)$, $\chi_{811}(94,·)$, $\chi_{811}(225,·)$, $\chi_{811}(610,·)$, $\chi_{811}(483,·)$, $\chi_{811}(613,·)$, $\chi_{811}(237,·)$, $\chi_{811}(532,·)$, $\chi_{811}(112,·)$, $\chi_{811}(753,·)$, $\chi_{811}(371,·)$, $\chi_{811}(500,·)$, $\chi_{811}(120,·)$, $\chi_{811}(633,·)$, $\chi_{811}(379,·)$, $\chi_{811}(381,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $\frac{1}{131}a^{35}-\frac{62}{131}a^{34}-\frac{10}{131}a^{33}-\frac{62}{131}a^{32}+\frac{46}{131}a^{31}-\frac{45}{131}a^{30}+\frac{15}{131}a^{29}-\frac{7}{131}a^{28}+\frac{12}{131}a^{27}-\frac{17}{131}a^{26}+\frac{63}{131}a^{25}-\frac{3}{131}a^{24}-\frac{37}{131}a^{23}+\frac{64}{131}a^{22}-\frac{9}{131}a^{21}-\frac{41}{131}a^{20}-\frac{60}{131}a^{19}-\frac{13}{131}a^{18}-\frac{21}{131}a^{17}+\frac{59}{131}a^{16}+\frac{23}{131}a^{15}+\frac{9}{131}a^{14}+\frac{35}{131}a^{13}-\frac{3}{131}a^{12}-\frac{32}{131}a^{11}-\frac{65}{131}a^{10}+\frac{23}{131}a^{9}+\frac{61}{131}a^{8}-\frac{53}{131}a^{7}+\frac{10}{131}a^{6}-\frac{27}{131}a^{5}+\frac{63}{131}a^{4}-\frac{31}{131}a^{3}+\frac{40}{131}a^{2}-\frac{57}{131}a$, $\frac{1}{131}a^{36}-\frac{55}{131}a^{34}-\frac{27}{131}a^{33}+\frac{1}{131}a^{32}+\frac{56}{131}a^{31}-\frac{24}{131}a^{30}+\frac{6}{131}a^{29}-\frac{29}{131}a^{28}-\frac{59}{131}a^{27}+\frac{57}{131}a^{26}-\frac{27}{131}a^{25}+\frac{39}{131}a^{24}-\frac{3}{131}a^{23}+\frac{29}{131}a^{22}+\frac{56}{131}a^{21}+\frac{18}{131}a^{20}-\frac{65}{131}a^{19}-\frac{41}{131}a^{18}-\frac{64}{131}a^{17}+\frac{13}{131}a^{16}-\frac{6}{131}a^{15}-\frac{62}{131}a^{14}-\frac{60}{131}a^{13}+\frac{44}{131}a^{12}+\frac{47}{131}a^{11}+\frac{54}{131}a^{10}+\frac{46}{131}a^{9}+\frac{61}{131}a^{8}-\frac{1}{131}a^{7}-\frac{62}{131}a^{6}-\frac{39}{131}a^{5}-\frac{55}{131}a^{4}-\frac{48}{131}a^{3}+\frac{65}{131}a^{2}+\frac{3}{131}a$, $\frac{1}{131}a^{37}-\frac{31}{131}a^{34}-\frac{25}{131}a^{33}+\frac{52}{131}a^{32}+\frac{17}{131}a^{31}+\frac{20}{131}a^{30}+\frac{10}{131}a^{29}-\frac{51}{131}a^{28}+\frac{62}{131}a^{27}-\frac{45}{131}a^{26}-\frac{33}{131}a^{25}-\frac{37}{131}a^{24}-\frac{41}{131}a^{23}+\frac{39}{131}a^{22}+\frac{47}{131}a^{21}+\frac{38}{131}a^{20}+\frac{65}{131}a^{19}+\frac{7}{131}a^{18}+\frac{37}{131}a^{17}-\frac{36}{131}a^{16}+\frac{24}{131}a^{15}+\frac{42}{131}a^{14}+\frac{4}{131}a^{13}+\frac{13}{131}a^{12}-\frac{3}{131}a^{11}+\frac{8}{131}a^{10}+\frac{16}{131}a^{9}-\frac{52}{131}a^{8}+\frac{36}{131}a^{7}-\frac{13}{131}a^{6}+\frac{32}{131}a^{5}+\frac{11}{131}a^{4}+\frac{63}{131}a^{3}-\frac{24}{131}a^{2}+\frac{9}{131}a$, $\frac{1}{131}a^{38}+\frac{18}{131}a^{34}+\frac{4}{131}a^{33}+\frac{60}{131}a^{32}+\frac{5}{131}a^{31}+\frac{56}{131}a^{30}+\frac{21}{131}a^{29}-\frac{24}{131}a^{28}+\frac{65}{131}a^{27}-\frac{36}{131}a^{26}-\frac{49}{131}a^{25}-\frac{3}{131}a^{24}-\frac{60}{131}a^{23}-\frac{65}{131}a^{22}+\frac{21}{131}a^{21}-\frac{27}{131}a^{20}-\frac{19}{131}a^{19}+\frac{27}{131}a^{18}-\frac{32}{131}a^{17}+\frac{19}{131}a^{16}-\frac{31}{131}a^{15}+\frac{21}{131}a^{14}+\frac{50}{131}a^{13}+\frac{35}{131}a^{12}+\frac{64}{131}a^{11}-\frac{34}{131}a^{10}+\frac{6}{131}a^{9}-\frac{38}{131}a^{8}+\frac{47}{131}a^{7}-\frac{51}{131}a^{6}-\frac{40}{131}a^{5}+\frac{51}{131}a^{4}+\frac{63}{131}a^{3}-\frac{61}{131}a^{2}-\frac{64}{131}a$, $\frac{1}{917}a^{39}-\frac{1}{917}a^{38}-\frac{1}{917}a^{37}+\frac{1}{917}a^{36}+\frac{3}{917}a^{35}-\frac{156}{917}a^{34}+\frac{204}{917}a^{33}-\frac{32}{131}a^{32}+\frac{64}{131}a^{31}+\frac{334}{917}a^{30}+\frac{381}{917}a^{29}-\frac{44}{131}a^{28}-\frac{402}{917}a^{27}+\frac{344}{917}a^{26}+\frac{417}{917}a^{25}-\frac{67}{917}a^{24}-\frac{198}{917}a^{23}+\frac{164}{917}a^{22}-\frac{428}{917}a^{21}-\frac{183}{917}a^{20}+\frac{30}{917}a^{19}-\frac{305}{917}a^{18}+\frac{265}{917}a^{17}+\frac{424}{917}a^{16}+\frac{332}{917}a^{15}-\frac{79}{917}a^{14}-\frac{342}{917}a^{13}+\frac{367}{917}a^{12}+\frac{170}{917}a^{11}-\frac{249}{917}a^{10}+\frac{296}{917}a^{9}-\frac{62}{917}a^{8}+\frac{136}{917}a^{7}+\frac{74}{917}a^{6}-\frac{230}{917}a^{5}+\frac{180}{917}a^{4}-\frac{42}{131}a^{3}+\frac{403}{917}a^{2}+\frac{258}{917}a-\frac{3}{7}$, $\frac{1}{917}a^{40}-\frac{2}{917}a^{38}-\frac{3}{917}a^{36}+\frac{1}{917}a^{35}+\frac{55}{917}a^{34}-\frac{454}{917}a^{33}-\frac{23}{131}a^{32}+\frac{138}{917}a^{31}+\frac{372}{917}a^{30}-\frac{410}{917}a^{29}+\frac{249}{917}a^{28}+\frac{369}{917}a^{27}-\frac{422}{917}a^{26}+\frac{22}{131}a^{25}-\frac{83}{917}a^{24}-\frac{209}{917}a^{23}+\frac{219}{917}a^{22}+\frac{362}{917}a^{21}-\frac{174}{917}a^{20}+\frac{110}{917}a^{19}+\frac{79}{917}a^{18}-\frac{263}{917}a^{17}-\frac{48}{131}a^{16}+\frac{169}{917}a^{15}-\frac{435}{917}a^{14}+\frac{333}{917}a^{13}-\frac{233}{917}a^{12}+\frac{166}{917}a^{11}-\frac{254}{917}a^{10}-\frac{214}{917}a^{9}-\frac{129}{917}a^{8}+\frac{44}{131}a^{7}-\frac{16}{917}a^{6}-\frac{267}{917}a^{5}-\frac{114}{917}a^{4}+\frac{256}{917}a^{3}-\frac{53}{917}a^{2}+\frac{236}{917}a-\frac{3}{7}$, $\frac{1}{917}a^{41}-\frac{2}{917}a^{38}+\frac{2}{917}a^{37}+\frac{3}{917}a^{36}-\frac{2}{917}a^{35}+\frac{172}{917}a^{34}-\frac{215}{917}a^{33}+\frac{292}{917}a^{32}+\frac{323}{917}a^{31}-\frac{435}{917}a^{30}+\frac{136}{917}a^{29}-\frac{163}{917}a^{28}+\frac{286}{917}a^{27}-\frac{236}{917}a^{26}+\frac{219}{917}a^{25}-\frac{59}{131}a^{24}+\frac{33}{917}a^{23}-\frac{318}{917}a^{22}-\frac{134}{917}a^{21}-\frac{158}{917}a^{20}-\frac{211}{917}a^{19}-\frac{5}{917}a^{18}-\frac{58}{917}a^{17}-\frac{201}{917}a^{16}-\frac{135}{917}a^{15}-\frac{14}{131}a^{14}-\frac{49}{131}a^{13}+\frac{263}{917}a^{12}+\frac{247}{917}a^{11}-\frac{229}{917}a^{10}+\frac{43}{917}a^{9}-\frac{355}{917}a^{8}+\frac{179}{917}a^{7}+\frac{11}{131}a^{6}+\frac{62}{131}a^{5}+\frac{56}{131}a^{4}-\frac{81}{917}a^{3}+\frac{188}{917}a^{2}+\frac{109}{917}a+\frac{1}{7}$, $\frac{1}{917}a^{42}+\frac{1}{917}a^{37}+\frac{3}{917}a^{35}+\frac{236}{917}a^{34}-\frac{43}{131}a^{33}-\frac{279}{917}a^{32}-\frac{253}{917}a^{31}+\frac{426}{917}a^{30}-\frac{192}{917}a^{29}-\frac{22}{917}a^{28}-\frac{389}{917}a^{27}+\frac{214}{917}a^{26}+\frac{400}{917}a^{25}+\frac{424}{917}a^{24}+\frac{37}{131}a^{23}-\frac{2}{917}a^{22}-\frac{356}{917}a^{21}+\frac{179}{917}a^{20}-\frac{449}{917}a^{19}-\frac{227}{917}a^{18}+\frac{48}{131}a^{17}-\frac{442}{917}a^{16}+\frac{209}{917}a^{15}-\frac{242}{917}a^{14}-\frac{127}{917}a^{13}-\frac{328}{917}a^{12}+\frac{209}{917}a^{11}-\frac{12}{131}a^{10}-\frac{120}{917}a^{9}+\frac{384}{917}a^{8}+\frac{454}{917}a^{7}-\frac{251}{917}a^{6}+\frac{72}{917}a^{5}+\frac{258}{917}a^{4}+\frac{440}{917}a^{3}+\frac{334}{917}a^{2}-\frac{382}{917}a+\frac{1}{7}$, $\frac{1}{917}a^{43}+\frac{1}{917}a^{38}+\frac{3}{917}a^{36}-\frac{2}{917}a^{35}-\frac{31}{131}a^{34}+\frac{267}{917}a^{33}-\frac{169}{917}a^{32}-\frac{435}{917}a^{31}+\frac{431}{917}a^{30}+\frac{76}{917}a^{29}+\frac{360}{917}a^{28}+\frac{109}{917}a^{27}-\frac{139}{917}a^{26}+\frac{102}{917}a^{25}+\frac{8}{131}a^{24}-\frac{366}{917}a^{23}+\frac{1}{917}a^{22}-\frac{430}{917}a^{21}+\frac{139}{917}a^{20}+\frac{298}{917}a^{19}-\frac{34}{131}a^{18}-\frac{29}{917}a^{17}-\frac{78}{917}a^{16}-\frac{214}{917}a^{15}-\frac{435}{917}a^{14}-\frac{405}{917}a^{13}+\frac{6}{917}a^{12}+\frac{28}{131}a^{11}-\frac{239}{917}a^{10}+\frac{412}{917}a^{9}-\frac{309}{917}a^{8}+\frac{442}{917}a^{7}+\frac{443}{917}a^{6}+\frac{265}{917}a^{5}+\frac{118}{917}a^{4}+\frac{376}{917}a^{3}+\frac{185}{917}a^{2}-\frac{58}{917}a$, $\frac{1}{76\!\cdots\!57}a^{44}+\frac{87\!\cdots\!69}{76\!\cdots\!57}a^{43}-\frac{90\!\cdots\!58}{76\!\cdots\!57}a^{42}-\frac{32\!\cdots\!13}{76\!\cdots\!57}a^{41}-\frac{60\!\cdots\!20}{76\!\cdots\!57}a^{40}-\frac{69\!\cdots\!20}{76\!\cdots\!57}a^{39}-\frac{52\!\cdots\!94}{76\!\cdots\!57}a^{38}+\frac{22\!\cdots\!08}{76\!\cdots\!57}a^{37}-\frac{40\!\cdots\!95}{76\!\cdots\!57}a^{36}-\frac{10\!\cdots\!18}{76\!\cdots\!57}a^{35}-\frac{88\!\cdots\!32}{76\!\cdots\!57}a^{34}+\frac{35\!\cdots\!59}{10\!\cdots\!51}a^{33}-\frac{21\!\cdots\!85}{76\!\cdots\!57}a^{32}+\frac{66\!\cdots\!08}{76\!\cdots\!57}a^{31}+\frac{26\!\cdots\!25}{10\!\cdots\!51}a^{30}-\frac{22\!\cdots\!80}{76\!\cdots\!57}a^{29}-\frac{54\!\cdots\!95}{10\!\cdots\!51}a^{28}-\frac{61\!\cdots\!22}{76\!\cdots\!57}a^{27}-\frac{68\!\cdots\!91}{76\!\cdots\!57}a^{26}+\frac{26\!\cdots\!11}{76\!\cdots\!57}a^{25}+\frac{36\!\cdots\!82}{76\!\cdots\!57}a^{24}+\frac{24\!\cdots\!37}{76\!\cdots\!57}a^{23}-\frac{22\!\cdots\!23}{76\!\cdots\!57}a^{22}-\frac{13\!\cdots\!98}{76\!\cdots\!57}a^{21}-\frac{28\!\cdots\!83}{76\!\cdots\!57}a^{20}+\frac{66\!\cdots\!50}{76\!\cdots\!57}a^{19}+\frac{10\!\cdots\!25}{76\!\cdots\!57}a^{18}-\frac{10\!\cdots\!68}{76\!\cdots\!57}a^{17}+\frac{62\!\cdots\!84}{76\!\cdots\!57}a^{16}-\frac{31\!\cdots\!44}{76\!\cdots\!57}a^{15}-\frac{16\!\cdots\!40}{76\!\cdots\!57}a^{14}+\frac{49\!\cdots\!91}{10\!\cdots\!51}a^{13}+\frac{33\!\cdots\!97}{76\!\cdots\!57}a^{12}+\frac{12\!\cdots\!87}{76\!\cdots\!57}a^{11}+\frac{23\!\cdots\!35}{76\!\cdots\!57}a^{10}+\frac{32\!\cdots\!77}{10\!\cdots\!51}a^{9}-\frac{83\!\cdots\!24}{76\!\cdots\!57}a^{8}+\frac{29\!\cdots\!03}{10\!\cdots\!51}a^{7}-\frac{15\!\cdots\!22}{76\!\cdots\!57}a^{6}+\frac{12\!\cdots\!58}{76\!\cdots\!57}a^{5}-\frac{36\!\cdots\!98}{76\!\cdots\!57}a^{4}+\frac{31\!\cdots\!75}{76\!\cdots\!57}a^{3}-\frac{36\!\cdots\!60}{10\!\cdots\!51}a^{2}-\frac{23\!\cdots\!04}{76\!\cdots\!57}a-\frac{11\!\cdots\!22}{58\!\cdots\!47}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $44$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 396*x^43 + 829*x^42 + 69093*x^41 - 213329*x^40 - 6974865*x^39 + 28148607*x^38 + 450159883*x^37 - 2263089158*x^36 - 19342390441*x^35 + 120399126257*x^34 + 554492360509*x^33 - 4434413326456*x^32 - 10046622781109*x^31 + 116018246394393*x^30 + 86886702429318*x^29 - 2185646177028281*x^28 + 693994919431743*x^27 + 29756816334260440*x^26 - 33973753215967284*x^25 - 290582689767894657*x^24 + 543184152125443033*x^23 + 1984489268632473104*x^22 - 5275691290270373630*x^21 - 8880531728704621017*x^20 + 34163102478237698853*x^19 + 20979649586488016898*x^18 - 149269365665132134938*x^17 + 10063198266998551730*x^16 + 427685059470653411785*x^15 - 241034540985719055340*x^14 - 743760671890407982334*x^13 + 747995661858071416101*x^12 + 642020392083923396842*x^11 - 1065427764689162633315*x^10 - 59930805542863649405*x^9 + 666581021324279560724*x^8 - 231175789721089989336*x^7 - 115726943075772621725*x^6 + 74801496316603079673*x^5 - 1106196938800865215*x^4 - 5699180925312701810*x^3 + 720276517742393070*x^2 + 88437835208003944*x - 13311721526413589)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^45 - x^44 - 396*x^43 + 829*x^42 + 69093*x^41 - 213329*x^40 - 6974865*x^39 + 28148607*x^38 + 450159883*x^37 - 2263089158*x^36 - 19342390441*x^35 + 120399126257*x^34 + 554492360509*x^33 - 4434413326456*x^32 - 10046622781109*x^31 + 116018246394393*x^30 + 86886702429318*x^29 - 2185646177028281*x^28 + 693994919431743*x^27 + 29756816334260440*x^26 - 33973753215967284*x^25 - 290582689767894657*x^24 + 543184152125443033*x^23 + 1984489268632473104*x^22 - 5275691290270373630*x^21 - 8880531728704621017*x^20 + 34163102478237698853*x^19 + 20979649586488016898*x^18 - 149269365665132134938*x^17 + 10063198266998551730*x^16 + 427685059470653411785*x^15 - 241034540985719055340*x^14 - 743760671890407982334*x^13 + 747995661858071416101*x^12 + 642020392083923396842*x^11 - 1065427764689162633315*x^10 - 59930805542863649405*x^9 + 666581021324279560724*x^8 - 231175789721089989336*x^7 - 115726943075772621725*x^6 + 74801496316603079673*x^5 - 1106196938800865215*x^4 - 5699180925312701810*x^3 + 720276517742393070*x^2 + 88437835208003944*x - 13311721526413589, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^45 - x^44 - 396*x^43 + 829*x^42 + 69093*x^41 - 213329*x^40 - 6974865*x^39 + 28148607*x^38 + 450159883*x^37 - 2263089158*x^36 - 19342390441*x^35 + 120399126257*x^34 + 554492360509*x^33 - 4434413326456*x^32 - 10046622781109*x^31 + 116018246394393*x^30 + 86886702429318*x^29 - 2185646177028281*x^28 + 693994919431743*x^27 + 29756816334260440*x^26 - 33973753215967284*x^25 - 290582689767894657*x^24 + 543184152125443033*x^23 + 1984489268632473104*x^22 - 5275691290270373630*x^21 - 8880531728704621017*x^20 + 34163102478237698853*x^19 + 20979649586488016898*x^18 - 149269365665132134938*x^17 + 10063198266998551730*x^16 + 427685059470653411785*x^15 - 241034540985719055340*x^14 - 743760671890407982334*x^13 + 747995661858071416101*x^12 + 642020392083923396842*x^11 - 1065427764689162633315*x^10 - 59930805542863649405*x^9 + 666581021324279560724*x^8 - 231175789721089989336*x^7 - 115726943075772621725*x^6 + 74801496316603079673*x^5 - 1106196938800865215*x^4 - 5699180925312701810*x^3 + 720276517742393070*x^2 + 88437835208003944*x - 13311721526413589);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - x^44 - 396*x^43 + 829*x^42 + 69093*x^41 - 213329*x^40 - 6974865*x^39 + 28148607*x^38 + 450159883*x^37 - 2263089158*x^36 - 19342390441*x^35 + 120399126257*x^34 + 554492360509*x^33 - 4434413326456*x^32 - 10046622781109*x^31 + 116018246394393*x^30 + 86886702429318*x^29 - 2185646177028281*x^28 + 693994919431743*x^27 + 29756816334260440*x^26 - 33973753215967284*x^25 - 290582689767894657*x^24 + 543184152125443033*x^23 + 1984489268632473104*x^22 - 5275691290270373630*x^21 - 8880531728704621017*x^20 + 34163102478237698853*x^19 + 20979649586488016898*x^18 - 149269365665132134938*x^17 + 10063198266998551730*x^16 + 427685059470653411785*x^15 - 241034540985719055340*x^14 - 743760671890407982334*x^13 + 747995661858071416101*x^12 + 642020392083923396842*x^11 - 1065427764689162633315*x^10 - 59930805542863649405*x^9 + 666581021324279560724*x^8 - 231175789721089989336*x^7 - 115726943075772621725*x^6 + 74801496316603079673*x^5 - 1106196938800865215*x^4 - 5699180925312701810*x^3 + 720276517742393070*x^2 + 88437835208003944*x - 13311721526413589);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{45}$ (as 45T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 45
The 45 conjugacy class representatives for $C_{45}$
Character table for $C_{45}$

Intermediate fields

3.3.657721.1, 5.5.432596913841.1, 9.9.187140089864757577373281.1, 15.15.53246609481207900818015621743146524650441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15^{3}$ $45$ $45$ ${\href{/padicField/7.3.0.1}{3} }^{15}$ $45$ $45$ ${\href{/padicField/17.9.0.1}{9} }^{5}$ $15^{3}$ $45$ $15^{3}$ $45$ $15^{3}$ ${\href{/padicField/41.5.0.1}{5} }^{9}$ $45$ ${\href{/padicField/47.3.0.1}{3} }^{15}$ $15^{3}$ ${\href{/padicField/59.5.0.1}{5} }^{9}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(811\) Copy content Toggle raw display Deg $45$$45$$1$$44$