Properties

Label 45.45.644...625.1
Degree $45$
Signature $[45, 0]$
Discriminant $6.444\times 10^{102}$
Root discriminant \(192.60\)
Ramified primes $3,5$
Class number not computed
Class group not computed
Galois group $C_{45}$ (as 45T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^45 - 135*x^43 - 45*x^42 + 8145*x^41 + 5076*x^40 - 290700*x^39 - 253620*x^38 + 6857235*x^37 + 7452610*x^36 - 113268978*x^35 - 144333495*x^34 + 1355213265*x^33 + 1957216455*x^32 - 11983335705*x^31 - 19266777171*x^30 + 79141746870*x^29 + 140783463765*x^28 - 391240008255*x^27 - 773615354895*x^26 + 1437267934764*x^25 + 3215872493700*x^24 - 3839971488165*x^23 - 10109340177300*x^22 + 7085017431465*x^21 + 23873005106874*x^20 - 7751347674075*x^19 - 41764000577760*x^18 + 1270029598110*x^17 + 52868417349600*x^16 + 10969424061639*x^15 - 46623586775670*x^14 - 19170786833010*x^13 + 26882974463550*x^12 + 16378966497285*x^11 - 8981328155022*x^10 - 7825331392520*x^9 + 1236586926825*x^8 + 1998991148400*x^7 + 84870189090*x^6 - 236319447555*x^5 - 31508573040*x^4 + 10090496085*x^3 + 1414058625*x^2 - 109748520*x - 10224199)
 
gp: K = bnfinit(y^45 - 135*y^43 - 45*y^42 + 8145*y^41 + 5076*y^40 - 290700*y^39 - 253620*y^38 + 6857235*y^37 + 7452610*y^36 - 113268978*y^35 - 144333495*y^34 + 1355213265*y^33 + 1957216455*y^32 - 11983335705*y^31 - 19266777171*y^30 + 79141746870*y^29 + 140783463765*y^28 - 391240008255*y^27 - 773615354895*y^26 + 1437267934764*y^25 + 3215872493700*y^24 - 3839971488165*y^23 - 10109340177300*y^22 + 7085017431465*y^21 + 23873005106874*y^20 - 7751347674075*y^19 - 41764000577760*y^18 + 1270029598110*y^17 + 52868417349600*y^16 + 10969424061639*y^15 - 46623586775670*y^14 - 19170786833010*y^13 + 26882974463550*y^12 + 16378966497285*y^11 - 8981328155022*y^10 - 7825331392520*y^9 + 1236586926825*y^8 + 1998991148400*y^7 + 84870189090*y^6 - 236319447555*y^5 - 31508573040*y^4 + 10090496085*y^3 + 1414058625*y^2 - 109748520*y - 10224199, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - 135*x^43 - 45*x^42 + 8145*x^41 + 5076*x^40 - 290700*x^39 - 253620*x^38 + 6857235*x^37 + 7452610*x^36 - 113268978*x^35 - 144333495*x^34 + 1355213265*x^33 + 1957216455*x^32 - 11983335705*x^31 - 19266777171*x^30 + 79141746870*x^29 + 140783463765*x^28 - 391240008255*x^27 - 773615354895*x^26 + 1437267934764*x^25 + 3215872493700*x^24 - 3839971488165*x^23 - 10109340177300*x^22 + 7085017431465*x^21 + 23873005106874*x^20 - 7751347674075*x^19 - 41764000577760*x^18 + 1270029598110*x^17 + 52868417349600*x^16 + 10969424061639*x^15 - 46623586775670*x^14 - 19170786833010*x^13 + 26882974463550*x^12 + 16378966497285*x^11 - 8981328155022*x^10 - 7825331392520*x^9 + 1236586926825*x^8 + 1998991148400*x^7 + 84870189090*x^6 - 236319447555*x^5 - 31508573040*x^4 + 10090496085*x^3 + 1414058625*x^2 - 109748520*x - 10224199);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 135*x^43 - 45*x^42 + 8145*x^41 + 5076*x^40 - 290700*x^39 - 253620*x^38 + 6857235*x^37 + 7452610*x^36 - 113268978*x^35 - 144333495*x^34 + 1355213265*x^33 + 1957216455*x^32 - 11983335705*x^31 - 19266777171*x^30 + 79141746870*x^29 + 140783463765*x^28 - 391240008255*x^27 - 773615354895*x^26 + 1437267934764*x^25 + 3215872493700*x^24 - 3839971488165*x^23 - 10109340177300*x^22 + 7085017431465*x^21 + 23873005106874*x^20 - 7751347674075*x^19 - 41764000577760*x^18 + 1270029598110*x^17 + 52868417349600*x^16 + 10969424061639*x^15 - 46623586775670*x^14 - 19170786833010*x^13 + 26882974463550*x^12 + 16378966497285*x^11 - 8981328155022*x^10 - 7825331392520*x^9 + 1236586926825*x^8 + 1998991148400*x^7 + 84870189090*x^6 - 236319447555*x^5 - 31508573040*x^4 + 10090496085*x^3 + 1414058625*x^2 - 109748520*x - 10224199)
 

\( x^{45} - 135 x^{43} - 45 x^{42} + 8145 x^{41} + 5076 x^{40} - 290700 x^{39} - 253620 x^{38} + \cdots - 10224199 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $45$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[45, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(644\!\cdots\!625\) \(\medspace = 3^{110}\cdot 5^{72}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(192.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{22/9}5^{8/5}\approx 192.59650745479388$
Ramified primes:   \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $45$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(675=3^{3}\cdot 5^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{675}(256,·)$, $\chi_{675}(1,·)$, $\chi_{675}(646,·)$, $\chi_{675}(391,·)$, $\chi_{675}(136,·)$, $\chi_{675}(526,·)$, $\chi_{675}(271,·)$, $\chi_{675}(16,·)$, $\chi_{675}(661,·)$, $\chi_{675}(406,·)$, $\chi_{675}(151,·)$, $\chi_{675}(541,·)$, $\chi_{675}(286,·)$, $\chi_{675}(31,·)$, $\chi_{675}(421,·)$, $\chi_{675}(166,·)$, $\chi_{675}(556,·)$, $\chi_{675}(301,·)$, $\chi_{675}(46,·)$, $\chi_{675}(436,·)$, $\chi_{675}(181,·)$, $\chi_{675}(571,·)$, $\chi_{675}(316,·)$, $\chi_{675}(61,·)$, $\chi_{675}(451,·)$, $\chi_{675}(196,·)$, $\chi_{675}(586,·)$, $\chi_{675}(331,·)$, $\chi_{675}(76,·)$, $\chi_{675}(466,·)$, $\chi_{675}(211,·)$, $\chi_{675}(601,·)$, $\chi_{675}(346,·)$, $\chi_{675}(91,·)$, $\chi_{675}(481,·)$, $\chi_{675}(226,·)$, $\chi_{675}(616,·)$, $\chi_{675}(361,·)$, $\chi_{675}(106,·)$, $\chi_{675}(496,·)$, $\chi_{675}(241,·)$, $\chi_{675}(631,·)$, $\chi_{675}(376,·)$, $\chi_{675}(121,·)$, $\chi_{675}(511,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{7}a^{36}+\frac{1}{7}a^{35}-\frac{1}{7}a^{34}+\frac{3}{7}a^{33}+\frac{1}{7}a^{32}-\frac{3}{7}a^{31}+\frac{1}{7}a^{30}-\frac{1}{7}a^{29}-\frac{2}{7}a^{28}+\frac{1}{7}a^{27}-\frac{3}{7}a^{26}-\frac{3}{7}a^{25}-\frac{2}{7}a^{23}+\frac{2}{7}a^{22}+\frac{3}{7}a^{21}-\frac{2}{7}a^{20}+\frac{1}{7}a^{19}-\frac{1}{7}a^{18}+\frac{2}{7}a^{17}-\frac{2}{7}a^{16}-\frac{1}{7}a^{15}-\frac{3}{7}a^{14}+\frac{3}{7}a^{12}-\frac{1}{7}a^{11}-\frac{2}{7}a^{10}-\frac{3}{7}a^{9}-\frac{1}{7}a^{8}-\frac{2}{7}a^{7}-\frac{1}{7}a^{5}+\frac{2}{7}a^{4}-\frac{2}{7}a^{3}+\frac{3}{7}a-\frac{3}{7}$, $\frac{1}{7}a^{37}-\frac{2}{7}a^{35}-\frac{3}{7}a^{34}-\frac{2}{7}a^{33}+\frac{3}{7}a^{32}-\frac{3}{7}a^{31}-\frac{2}{7}a^{30}-\frac{1}{7}a^{29}+\frac{3}{7}a^{28}+\frac{3}{7}a^{27}+\frac{3}{7}a^{25}-\frac{2}{7}a^{24}-\frac{3}{7}a^{23}+\frac{1}{7}a^{22}+\frac{2}{7}a^{21}+\frac{3}{7}a^{20}-\frac{2}{7}a^{19}+\frac{3}{7}a^{18}+\frac{3}{7}a^{17}+\frac{1}{7}a^{16}-\frac{2}{7}a^{15}+\frac{3}{7}a^{14}+\frac{3}{7}a^{13}+\frac{3}{7}a^{12}-\frac{1}{7}a^{11}-\frac{1}{7}a^{10}+\frac{2}{7}a^{9}-\frac{1}{7}a^{8}+\frac{2}{7}a^{7}-\frac{1}{7}a^{6}+\frac{3}{7}a^{5}+\frac{3}{7}a^{4}+\frac{2}{7}a^{3}+\frac{3}{7}a^{2}+\frac{1}{7}a+\frac{3}{7}$, $\frac{1}{749}a^{38}+\frac{2}{107}a^{37}+\frac{4}{107}a^{36}+\frac{356}{749}a^{35}+\frac{178}{749}a^{34}+\frac{338}{749}a^{33}-\frac{8}{749}a^{32}+\frac{13}{749}a^{31}-\frac{13}{749}a^{30}+\frac{92}{749}a^{29}-\frac{197}{749}a^{28}-\frac{320}{749}a^{27}-\frac{87}{749}a^{26}-\frac{365}{749}a^{25}+\frac{81}{749}a^{24}-\frac{276}{749}a^{23}+\frac{279}{749}a^{22}-\frac{327}{749}a^{21}+\frac{302}{749}a^{20}-\frac{366}{749}a^{19}+\frac{358}{749}a^{18}-\frac{254}{749}a^{17}+\frac{1}{749}a^{16}+\frac{113}{749}a^{15}-\frac{353}{749}a^{14}-\frac{109}{749}a^{13}+\frac{152}{749}a^{12}+\frac{277}{749}a^{11}-\frac{44}{749}a^{10}+\frac{52}{107}a^{9}+\frac{50}{107}a^{8}+\frac{93}{749}a^{7}+\frac{38}{749}a^{6}-\frac{69}{749}a^{5}-\frac{64}{749}a^{4}+\frac{111}{749}a^{3}+\frac{351}{749}a^{2}-\frac{348}{749}a-\frac{48}{749}$, $\frac{1}{749}a^{39}+\frac{46}{749}a^{37}-\frac{36}{749}a^{36}+\frac{9}{749}a^{35}+\frac{200}{749}a^{34}+\frac{75}{749}a^{33}+\frac{18}{749}a^{32}-\frac{88}{749}a^{31}-\frac{22}{107}a^{30}-\frac{201}{749}a^{29}+\frac{12}{107}a^{28}-\frac{208}{749}a^{27}+\frac{104}{749}a^{26}-\frac{159}{749}a^{25}-\frac{340}{749}a^{24}-\frac{244}{749}a^{23}-\frac{274}{749}a^{22}+\frac{65}{749}a^{21}-\frac{207}{749}a^{20}-\frac{27}{107}a^{19}-\frac{130}{749}a^{18}-\frac{295}{749}a^{17}+\frac{313}{749}a^{16}-\frac{116}{749}a^{15}+\frac{232}{749}a^{14}+\frac{73}{749}a^{13}+\frac{289}{749}a^{12}+\frac{358}{749}a^{11}+\frac{17}{749}a^{10}+\frac{176}{749}a^{9}+\frac{222}{749}a^{8}-\frac{87}{749}a^{7}-\frac{66}{749}a^{6}+\frac{46}{749}a^{5}+\frac{151}{749}a^{4}-\frac{26}{749}a^{3}-\frac{18}{107}a^{2}-\frac{205}{749}a-\frac{184}{749}$, $\frac{1}{749}a^{40}-\frac{38}{749}a^{37}+\frac{5}{749}a^{36}+\frac{302}{749}a^{35}-\frac{88}{749}a^{34}-\frac{229}{749}a^{33}-\frac{255}{749}a^{32}+\frac{211}{749}a^{31}-\frac{352}{749}a^{30}-\frac{82}{749}a^{29}-\frac{27}{749}a^{28}+\frac{58}{749}a^{27}-\frac{9}{749}a^{26}+\frac{293}{749}a^{25}-\frac{11}{749}a^{24}-\frac{311}{749}a^{23}+\frac{178}{749}a^{22}-\frac{36}{107}a^{21}+\frac{257}{749}a^{20}+\frac{228}{749}a^{19}+\frac{51}{107}a^{18}+\frac{13}{749}a^{17}+\frac{159}{749}a^{16}-\frac{44}{749}a^{15}+\frac{22}{107}a^{14}-\frac{261}{749}a^{13}-\frac{1}{7}a^{12}+\frac{47}{107}a^{11}-\frac{261}{749}a^{10}-\frac{365}{749}a^{9}-\frac{137}{749}a^{8}+\frac{52}{107}a^{7}-\frac{97}{749}a^{6}+\frac{222}{749}a^{5}-\frac{78}{749}a^{4}+\frac{225}{749}a^{3}-\frac{194}{749}a^{2}+\frac{95}{749}a+\frac{282}{749}$, $\frac{1}{749}a^{41}+\frac{2}{749}a^{37}-\frac{25}{749}a^{36}-\frac{363}{749}a^{35}-\frac{206}{749}a^{34}-\frac{251}{749}a^{33}-\frac{93}{749}a^{32}-\frac{72}{749}a^{31}-\frac{148}{749}a^{30}+\frac{152}{749}a^{29}-\frac{37}{107}a^{28}-\frac{185}{749}a^{27}-\frac{338}{749}a^{26}-\frac{78}{749}a^{25}+\frac{92}{749}a^{24}+\frac{69}{749}a^{23}+\frac{292}{749}a^{22}-\frac{185}{749}a^{21}+\frac{148}{749}a^{20}+\frac{359}{749}a^{19}-\frac{79}{749}a^{18}+\frac{351}{749}a^{17}-\frac{6}{749}a^{16}+\frac{24}{107}a^{15}+\frac{128}{749}a^{14}+\frac{138}{749}a^{13}+\frac{327}{749}a^{12}+\frac{207}{749}a^{11}-\frac{218}{749}a^{10}+\frac{320}{749}a^{9}-\frac{139}{749}a^{8}-\frac{94}{749}a^{7}-\frac{46}{749}a^{6}+\frac{82}{749}a^{5}+\frac{21}{107}a^{4}-\frac{256}{749}a^{3}-\frac{156}{749}a^{2}+\frac{326}{749}a-\frac{5}{749}$, $\frac{1}{749}a^{42}-\frac{53}{749}a^{37}+\frac{9}{749}a^{36}+\frac{37}{107}a^{35}-\frac{286}{749}a^{34}-\frac{234}{749}a^{33}+\frac{372}{749}a^{32}+\frac{40}{749}a^{31}-\frac{143}{749}a^{30}-\frac{122}{749}a^{29}+\frac{102}{749}a^{28}-\frac{19}{749}a^{27}+\frac{310}{749}a^{26}+\frac{41}{107}a^{25}-\frac{93}{749}a^{24}-\frac{12}{749}a^{23}+\frac{113}{749}a^{22}-\frac{23}{107}a^{21}-\frac{352}{749}a^{20}+\frac{332}{749}a^{19}-\frac{44}{749}a^{18}-\frac{20}{107}a^{17}+\frac{59}{749}a^{16}+\frac{223}{749}a^{15}+\frac{309}{749}a^{14}-\frac{204}{749}a^{13}-\frac{311}{749}a^{12}+\frac{298}{749}a^{11}+\frac{43}{107}a^{10}+\frac{96}{749}a^{9}+\frac{276}{749}a^{8}-\frac{339}{749}a^{7}+\frac{6}{749}a^{6}-\frac{143}{749}a^{5}-\frac{3}{107}a^{4}+\frac{264}{749}a^{3}+\frac{373}{749}a^{2}-\frac{272}{749}a+\frac{310}{749}$, $\frac{1}{80143}a^{43}+\frac{19}{80143}a^{42}+\frac{2}{80143}a^{41}+\frac{17}{80143}a^{40}-\frac{5}{80143}a^{39}-\frac{4}{80143}a^{38}-\frac{970}{80143}a^{37}-\frac{2691}{80143}a^{36}-\frac{7905}{80143}a^{35}-\frac{15262}{80143}a^{34}-\frac{24810}{80143}a^{33}-\frac{32670}{80143}a^{32}+\frac{5886}{80143}a^{31}-\frac{16369}{80143}a^{30}+\frac{15689}{80143}a^{29}+\frac{33134}{80143}a^{28}+\frac{584}{80143}a^{27}+\frac{31916}{80143}a^{26}+\frac{588}{11449}a^{25}-\frac{19760}{80143}a^{24}-\frac{19280}{80143}a^{23}-\frac{24517}{80143}a^{22}-\frac{33615}{80143}a^{21}+\frac{6973}{80143}a^{20}+\frac{16446}{80143}a^{19}+\frac{24732}{80143}a^{18}-\frac{34156}{80143}a^{17}+\frac{35368}{80143}a^{16}-\frac{27413}{80143}a^{15}-\frac{25859}{80143}a^{14}-\frac{5661}{11449}a^{13}-\frac{16502}{80143}a^{12}-\frac{18191}{80143}a^{11}+\frac{2092}{11449}a^{10}-\frac{37869}{80143}a^{9}-\frac{16865}{80143}a^{8}+\frac{24887}{80143}a^{7}+\frac{33913}{80143}a^{6}-\frac{25523}{80143}a^{5}+\frac{4016}{11449}a^{4}+\frac{5585}{11449}a^{3}-\frac{12029}{80143}a^{2}-\frac{283}{749}a+\frac{29251}{80143}$, $\frac{1}{10\!\cdots\!51}a^{44}-\frac{61\!\cdots\!65}{10\!\cdots\!51}a^{43}+\frac{66\!\cdots\!94}{10\!\cdots\!51}a^{42}+\frac{57\!\cdots\!15}{15\!\cdots\!93}a^{41}+\frac{46\!\cdots\!44}{10\!\cdots\!51}a^{40}+\frac{14\!\cdots\!78}{10\!\cdots\!51}a^{39}-\frac{13\!\cdots\!39}{10\!\cdots\!51}a^{38}-\frac{37\!\cdots\!86}{15\!\cdots\!93}a^{37}-\frac{55\!\cdots\!18}{10\!\cdots\!51}a^{36}-\frac{13\!\cdots\!71}{10\!\cdots\!51}a^{35}+\frac{47\!\cdots\!55}{10\!\cdots\!51}a^{34}+\frac{23\!\cdots\!46}{10\!\cdots\!51}a^{33}+\frac{42\!\cdots\!68}{10\!\cdots\!51}a^{32}+\frac{36\!\cdots\!86}{10\!\cdots\!51}a^{31}+\frac{38\!\cdots\!65}{10\!\cdots\!51}a^{30}-\frac{96\!\cdots\!45}{10\!\cdots\!51}a^{29}-\frac{51\!\cdots\!60}{10\!\cdots\!51}a^{28}-\frac{38\!\cdots\!95}{10\!\cdots\!51}a^{27}+\frac{95\!\cdots\!89}{10\!\cdots\!51}a^{26}-\frac{30\!\cdots\!62}{10\!\cdots\!51}a^{25}+\frac{28\!\cdots\!35}{10\!\cdots\!51}a^{24}+\frac{13\!\cdots\!07}{10\!\cdots\!51}a^{23}+\frac{46\!\cdots\!66}{10\!\cdots\!51}a^{22}-\frac{47\!\cdots\!97}{10\!\cdots\!51}a^{21}+\frac{12\!\cdots\!16}{10\!\cdots\!51}a^{20}+\frac{19\!\cdots\!75}{10\!\cdots\!51}a^{19}-\frac{28\!\cdots\!02}{10\!\cdots\!51}a^{18}-\frac{32\!\cdots\!37}{15\!\cdots\!93}a^{17}-\frac{17\!\cdots\!69}{10\!\cdots\!51}a^{16}-\frac{21\!\cdots\!71}{10\!\cdots\!51}a^{15}-\frac{41\!\cdots\!63}{10\!\cdots\!51}a^{14}-\frac{30\!\cdots\!31}{10\!\cdots\!51}a^{13}+\frac{35\!\cdots\!20}{10\!\cdots\!51}a^{12}+\frac{22\!\cdots\!77}{10\!\cdots\!51}a^{11}+\frac{49\!\cdots\!01}{10\!\cdots\!51}a^{10}-\frac{34\!\cdots\!55}{10\!\cdots\!51}a^{9}+\frac{42\!\cdots\!55}{10\!\cdots\!51}a^{8}-\frac{34\!\cdots\!79}{10\!\cdots\!51}a^{7}-\frac{46\!\cdots\!46}{98\!\cdots\!93}a^{6}-\frac{25\!\cdots\!02}{10\!\cdots\!51}a^{5}-\frac{38\!\cdots\!22}{15\!\cdots\!93}a^{4}-\frac{70\!\cdots\!03}{15\!\cdots\!93}a^{3}-\frac{58\!\cdots\!20}{15\!\cdots\!93}a^{2}+\frac{12\!\cdots\!91}{10\!\cdots\!51}a+\frac{19\!\cdots\!91}{40\!\cdots\!07}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $44$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^45 - 135*x^43 - 45*x^42 + 8145*x^41 + 5076*x^40 - 290700*x^39 - 253620*x^38 + 6857235*x^37 + 7452610*x^36 - 113268978*x^35 - 144333495*x^34 + 1355213265*x^33 + 1957216455*x^32 - 11983335705*x^31 - 19266777171*x^30 + 79141746870*x^29 + 140783463765*x^28 - 391240008255*x^27 - 773615354895*x^26 + 1437267934764*x^25 + 3215872493700*x^24 - 3839971488165*x^23 - 10109340177300*x^22 + 7085017431465*x^21 + 23873005106874*x^20 - 7751347674075*x^19 - 41764000577760*x^18 + 1270029598110*x^17 + 52868417349600*x^16 + 10969424061639*x^15 - 46623586775670*x^14 - 19170786833010*x^13 + 26882974463550*x^12 + 16378966497285*x^11 - 8981328155022*x^10 - 7825331392520*x^9 + 1236586926825*x^8 + 1998991148400*x^7 + 84870189090*x^6 - 236319447555*x^5 - 31508573040*x^4 + 10090496085*x^3 + 1414058625*x^2 - 109748520*x - 10224199)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^45 - 135*x^43 - 45*x^42 + 8145*x^41 + 5076*x^40 - 290700*x^39 - 253620*x^38 + 6857235*x^37 + 7452610*x^36 - 113268978*x^35 - 144333495*x^34 + 1355213265*x^33 + 1957216455*x^32 - 11983335705*x^31 - 19266777171*x^30 + 79141746870*x^29 + 140783463765*x^28 - 391240008255*x^27 - 773615354895*x^26 + 1437267934764*x^25 + 3215872493700*x^24 - 3839971488165*x^23 - 10109340177300*x^22 + 7085017431465*x^21 + 23873005106874*x^20 - 7751347674075*x^19 - 41764000577760*x^18 + 1270029598110*x^17 + 52868417349600*x^16 + 10969424061639*x^15 - 46623586775670*x^14 - 19170786833010*x^13 + 26882974463550*x^12 + 16378966497285*x^11 - 8981328155022*x^10 - 7825331392520*x^9 + 1236586926825*x^8 + 1998991148400*x^7 + 84870189090*x^6 - 236319447555*x^5 - 31508573040*x^4 + 10090496085*x^3 + 1414058625*x^2 - 109748520*x - 10224199, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^45 - 135*x^43 - 45*x^42 + 8145*x^41 + 5076*x^40 - 290700*x^39 - 253620*x^38 + 6857235*x^37 + 7452610*x^36 - 113268978*x^35 - 144333495*x^34 + 1355213265*x^33 + 1957216455*x^32 - 11983335705*x^31 - 19266777171*x^30 + 79141746870*x^29 + 140783463765*x^28 - 391240008255*x^27 - 773615354895*x^26 + 1437267934764*x^25 + 3215872493700*x^24 - 3839971488165*x^23 - 10109340177300*x^22 + 7085017431465*x^21 + 23873005106874*x^20 - 7751347674075*x^19 - 41764000577760*x^18 + 1270029598110*x^17 + 52868417349600*x^16 + 10969424061639*x^15 - 46623586775670*x^14 - 19170786833010*x^13 + 26882974463550*x^12 + 16378966497285*x^11 - 8981328155022*x^10 - 7825331392520*x^9 + 1236586926825*x^8 + 1998991148400*x^7 + 84870189090*x^6 - 236319447555*x^5 - 31508573040*x^4 + 10090496085*x^3 + 1414058625*x^2 - 109748520*x - 10224199);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 135*x^43 - 45*x^42 + 8145*x^41 + 5076*x^40 - 290700*x^39 - 253620*x^38 + 6857235*x^37 + 7452610*x^36 - 113268978*x^35 - 144333495*x^34 + 1355213265*x^33 + 1957216455*x^32 - 11983335705*x^31 - 19266777171*x^30 + 79141746870*x^29 + 140783463765*x^28 - 391240008255*x^27 - 773615354895*x^26 + 1437267934764*x^25 + 3215872493700*x^24 - 3839971488165*x^23 - 10109340177300*x^22 + 7085017431465*x^21 + 23873005106874*x^20 - 7751347674075*x^19 - 41764000577760*x^18 + 1270029598110*x^17 + 52868417349600*x^16 + 10969424061639*x^15 - 46623586775670*x^14 - 19170786833010*x^13 + 26882974463550*x^12 + 16378966497285*x^11 - 8981328155022*x^10 - 7825331392520*x^9 + 1236586926825*x^8 + 1998991148400*x^7 + 84870189090*x^6 - 236319447555*x^5 - 31508573040*x^4 + 10090496085*x^3 + 1414058625*x^2 - 109748520*x - 10224199);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{45}$ (as 45T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 45
The 45 conjugacy class representatives for $C_{45}$
Character table for $C_{45}$

Intermediate fields

\(\Q(\zeta_{9})^+\), 5.5.390625.1, \(\Q(\zeta_{27})^+\), 15.15.207828545629978179931640625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $45$ R R ${\href{/padicField/7.9.0.1}{9} }^{5}$ $45$ $45$ $15^{3}$ $15^{3}$ $45$ $45$ $45$ $15^{3}$ $45$ ${\href{/padicField/43.9.0.1}{9} }^{5}$ $45$ ${\href{/padicField/53.5.0.1}{5} }^{9}$ $45$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $45$$9$$5$$110$
\(5\) Copy content Toggle raw display Deg $45$$5$$9$$72$