sage: x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 250*x^43 - 57*x^42 + 27766*x^41 + 34148*x^40 - 1801054*x^39 - 3701713*x^38 + 75995397*x^37 + 210980315*x^36 - 2204269403*x^35 - 7656169786*x^34 + 45208500184*x^33 + 192019854445*x^32 - 660457840142*x^31 - 3478319662546*x^30 + 6740250648134*x^29 + 46682393472693*x^28 - 44214268231149*x^27 - 471014331370572*x^26 + 119457837724165*x^25 + 3599175944415558*x^24 + 920658436866528*x^23 - 20872201046519003*x^22 - 13494994939768731*x^21 + 91678287510298882*x^20 + 87997267245853232*x^19 - 303360026160716188*x^18 - 371303902979085816*x^17 + 749732931610001378*x^16 + 1094855896004641434*x^15 - 1366727950240442050*x^14 - 2306120975093560007*x^13 + 1803267431605382487*x^12 + 3471556977526533885*x^11 - 1666809346078423573*x^10 - 3682047656706158942*x^9 + 1008367868417943528*x^8 + 2668021411897921137*x^7 - 327662726329807390*x^6 - 1248245094003212175*x^5 + 152924933759221*x^4 + 338163088283119511*x^3 + 38015736547359269*x^2 - 40401517332214916*x - 8937046621536643)
gp: K = bnfinit(y^45 - y^44 - 250*y^43 - 57*y^42 + 27766*y^41 + 34148*y^40 - 1801054*y^39 - 3701713*y^38 + 75995397*y^37 + 210980315*y^36 - 2204269403*y^35 - 7656169786*y^34 + 45208500184*y^33 + 192019854445*y^32 - 660457840142*y^31 - 3478319662546*y^30 + 6740250648134*y^29 + 46682393472693*y^28 - 44214268231149*y^27 - 471014331370572*y^26 + 119457837724165*y^25 + 3599175944415558*y^24 + 920658436866528*y^23 - 20872201046519003*y^22 - 13494994939768731*y^21 + 91678287510298882*y^20 + 87997267245853232*y^19 - 303360026160716188*y^18 - 371303902979085816*y^17 + 749732931610001378*y^16 + 1094855896004641434*y^15 - 1366727950240442050*y^14 - 2306120975093560007*y^13 + 1803267431605382487*y^12 + 3471556977526533885*y^11 - 1666809346078423573*y^10 - 3682047656706158942*y^9 + 1008367868417943528*y^8 + 2668021411897921137*y^7 - 327662726329807390*y^6 - 1248245094003212175*y^5 + 152924933759221*y^4 + 338163088283119511*y^3 + 38015736547359269*y^2 - 40401517332214916*y - 8937046621536643, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - x^44 - 250*x^43 - 57*x^42 + 27766*x^41 + 34148*x^40 - 1801054*x^39 - 3701713*x^38 + 75995397*x^37 + 210980315*x^36 - 2204269403*x^35 - 7656169786*x^34 + 45208500184*x^33 + 192019854445*x^32 - 660457840142*x^31 - 3478319662546*x^30 + 6740250648134*x^29 + 46682393472693*x^28 - 44214268231149*x^27 - 471014331370572*x^26 + 119457837724165*x^25 + 3599175944415558*x^24 + 920658436866528*x^23 - 20872201046519003*x^22 - 13494994939768731*x^21 + 91678287510298882*x^20 + 87997267245853232*x^19 - 303360026160716188*x^18 - 371303902979085816*x^17 + 749732931610001378*x^16 + 1094855896004641434*x^15 - 1366727950240442050*x^14 - 2306120975093560007*x^13 + 1803267431605382487*x^12 + 3471556977526533885*x^11 - 1666809346078423573*x^10 - 3682047656706158942*x^9 + 1008367868417943528*x^8 + 2668021411897921137*x^7 - 327662726329807390*x^6 - 1248245094003212175*x^5 + 152924933759221*x^4 + 338163088283119511*x^3 + 38015736547359269*x^2 - 40401517332214916*x - 8937046621536643);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^45 - x^44 - 250*x^43 - 57*x^42 + 27766*x^41 + 34148*x^40 - 1801054*x^39 - 3701713*x^38 + 75995397*x^37 + 210980315*x^36 - 2204269403*x^35 - 7656169786*x^34 + 45208500184*x^33 + 192019854445*x^32 - 660457840142*x^31 - 3478319662546*x^30 + 6740250648134*x^29 + 46682393472693*x^28 - 44214268231149*x^27 - 471014331370572*x^26 + 119457837724165*x^25 + 3599175944415558*x^24 + 920658436866528*x^23 - 20872201046519003*x^22 - 13494994939768731*x^21 + 91678287510298882*x^20 + 87997267245853232*x^19 - 303360026160716188*x^18 - 371303902979085816*x^17 + 749732931610001378*x^16 + 1094855896004641434*x^15 - 1366727950240442050*x^14 - 2306120975093560007*x^13 + 1803267431605382487*x^12 + 3471556977526533885*x^11 - 1666809346078423573*x^10 - 3682047656706158942*x^9 + 1008367868417943528*x^8 + 2668021411897921137*x^7 - 327662726329807390*x^6 - 1248245094003212175*x^5 + 152924933759221*x^4 + 338163088283119511*x^3 + 38015736547359269*x^2 - 40401517332214916*x - 8937046621536643)
\( x^{45} - x^{44} - 250 x^{43} - 57 x^{42} + 27766 x^{41} + 34148 x^{40} - 1801054 x^{39} + \cdots - 89\!\cdots\!43 \)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Degree : $45$
sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
Signature : $[45, 0]$
sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
Discriminant :
\(612\!\cdots\!361\)
\(\medspace = 19^{40}\cdot 31^{42}\)
sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
Root discriminant : \(337.76\)
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: OK = ring_of_integers(K);
(1.0 * abs(discriminant(OK)))^(1/degree(K))
Galois root discriminant : $19^{8/9}31^{14/15}\approx 337.75940307002355$
Ramified primes :
\(19\), \(31\)
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant(OK))
Discriminant root field : \(\Q\)
$\Aut(K/\Q)$
$=$
$\Gal(K/\Q)$ :
$C_{45}$
sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
This field is Galois and abelian over $\Q$.
Conductor : \(589=19\cdot 31\)
Dirichlet character group :
$\lbrace$$\chi_{589}(1,·)$ , $\chi_{589}(131,·)$ , $\chi_{589}(9,·)$ , $\chi_{589}(138,·)$ , $\chi_{589}(140,·)$ , $\chi_{589}(397,·)$ , $\chi_{589}(142,·)$ , $\chi_{589}(536,·)$ , $\chi_{589}(149,·)$ , $\chi_{589}(408,·)$ , $\chi_{589}(543,·)$ , $\chi_{589}(289,·)$ , $\chi_{589}(419,·)$ , $\chi_{589}(39,·)$ , $\chi_{589}(169,·)$ , $\chi_{589}(175,·)$ , $\chi_{589}(562,·)$ , $\chi_{589}(438,·)$ , $\chi_{589}(311,·)$ , $\chi_{589}(159,·)$ , $\chi_{589}(64,·)$ , $\chi_{589}(196,·)$ , $\chi_{589}(453,·)$ , $\chi_{589}(586,·)$ , $\chi_{589}(80,·)$ , $\chi_{589}(81,·)$ , $\chi_{589}(82,·)$ , $\chi_{589}(163,·)$ , $\chi_{589}(214,·)$ , $\chi_{589}(343,·)$ , $\chi_{589}(472,·)$ , $\chi_{589}(346,·)$ , $\chi_{589}(349,·)$ , $\chi_{589}(351,·)$ , $\chi_{589}(443,·)$ , $\chi_{589}(100,·)$ , $\chi_{589}(237,·)$ , $\chi_{589}(366,·)$ , $\chi_{589}(125,·)$ , $\chi_{589}(112,·)$ , $\chi_{589}(467,·)$ , $\chi_{589}(245,·)$ , $\chi_{589}(576,·)$ , $\chi_{589}(253,·)$ , $\chi_{589}(510,·)$ $\rbrace$
This is not a CM field .
This field has no CM subfields.
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $\frac{1}{563}a^{42}+\frac{232}{563}a^{41}-\frac{61}{563}a^{40}-\frac{120}{563}a^{39}-\frac{20}{563}a^{38}+\frac{240}{563}a^{37}+\frac{122}{563}a^{36}-\frac{153}{563}a^{35}+\frac{80}{563}a^{34}-\frac{184}{563}a^{33}-\frac{54}{563}a^{32}-\frac{198}{563}a^{31}-\frac{66}{563}a^{30}+\frac{177}{563}a^{29}-\frac{47}{563}a^{28}-\frac{200}{563}a^{27}-\frac{28}{563}a^{26}+\frac{151}{563}a^{25}-\frac{50}{563}a^{24}+\frac{122}{563}a^{23}+\frac{87}{563}a^{22}+\frac{170}{563}a^{21}-\frac{71}{563}a^{20}-\frac{245}{563}a^{19}-\frac{34}{563}a^{18}+\frac{142}{563}a^{17}-\frac{37}{563}a^{16}-\frac{142}{563}a^{15}-\frac{82}{563}a^{14}+\frac{82}{563}a^{13}-\frac{225}{563}a^{12}+\frac{235}{563}a^{11}+\frac{262}{563}a^{10}+\frac{67}{563}a^{9}-\frac{146}{563}a^{8}-\frac{5}{563}a^{7}+\frac{237}{563}a^{6}-\frac{28}{563}a^{5}+\frac{182}{563}a^{4}+\frac{155}{563}a^{3}+\frac{163}{563}a^{2}-\frac{44}{563}a-\frac{196}{563}$, $\frac{1}{563}a^{43}+\frac{163}{563}a^{41}-\frac{43}{563}a^{40}+\frac{233}{563}a^{39}-\frac{187}{563}a^{38}+\frac{179}{563}a^{37}+\frac{256}{563}a^{36}+\frac{107}{563}a^{35}-\frac{165}{563}a^{34}-\frac{154}{563}a^{33}-\frac{56}{563}a^{32}+\frac{267}{563}a^{31}-\frac{275}{563}a^{30}-\frac{12}{563}a^{29}+\frac{7}{563}a^{28}+\frac{206}{563}a^{27}-\frac{109}{563}a^{26}-\frac{176}{563}a^{25}-\frac{101}{563}a^{24}-\frac{67}{563}a^{23}+\frac{254}{563}a^{22}-\frac{101}{563}a^{21}-\frac{100}{563}a^{20}-\frac{57}{563}a^{19}+\frac{148}{563}a^{18}+\frac{236}{563}a^{17}-\frac{3}{563}a^{16}+\frac{208}{563}a^{15}-\frac{36}{563}a^{14}-\frac{107}{563}a^{13}+\frac{76}{563}a^{12}-\frac{210}{563}a^{11}+\frac{87}{563}a^{10}+\frac{74}{563}a^{9}+\frac{87}{563}a^{8}+\frac{271}{563}a^{7}+\frac{162}{563}a^{6}-\frac{78}{563}a^{5}+\frac{156}{563}a^{4}+\frac{235}{563}a^{3}-\frac{139}{563}a^{2}-\frac{122}{563}a-\frac{131}{563}$, $\frac{1}{59\cdots 99}a^{44}-\frac{48\cdots 39}{59\cdots 99}a^{43}+\frac{50\cdots 37}{59\cdots 99}a^{42}+\frac{15\cdots 07}{59\cdots 99}a^{41}+\frac{35\cdots 30}{59\cdots 99}a^{40}+\frac{21\cdots 38}{59\cdots 99}a^{39}+\frac{18\cdots 94}{59\cdots 99}a^{38}+\frac{25\cdots 13}{59\cdots 99}a^{37}-\frac{25\cdots 34}{59\cdots 99}a^{36}-\frac{18\cdots 41}{59\cdots 99}a^{35}+\frac{26\cdots 18}{59\cdots 99}a^{34}+\frac{26\cdots 64}{59\cdots 99}a^{33}-\frac{29\cdots 44}{59\cdots 99}a^{32}+\frac{81\cdots 68}{59\cdots 99}a^{31}-\frac{95\cdots 62}{59\cdots 99}a^{30}-\frac{13\cdots 81}{59\cdots 99}a^{29}+\frac{23\cdots 19}{59\cdots 99}a^{28}+\frac{15\cdots 17}{59\cdots 99}a^{27}-\frac{21\cdots 04}{59\cdots 99}a^{26}+\frac{19\cdots 68}{59\cdots 99}a^{25}-\frac{53\cdots 28}{59\cdots 99}a^{24}+\frac{17\cdots 35}{59\cdots 99}a^{23}+\frac{11\cdots 45}{59\cdots 99}a^{22}+\frac{21\cdots 24}{59\cdots 99}a^{21}-\frac{14\cdots 53}{59\cdots 99}a^{20}-\frac{15\cdots 78}{59\cdots 99}a^{19}+\frac{18\cdots 97}{59\cdots 99}a^{18}+\frac{28\cdots 84}{59\cdots 99}a^{17}+\frac{82\cdots 99}{59\cdots 99}a^{16}-\frac{29\cdots 01}{59\cdots 99}a^{15}-\frac{27\cdots 47}{59\cdots 99}a^{14}-\frac{74\cdots 48}{59\cdots 99}a^{13}+\frac{28\cdots 25}{59\cdots 99}a^{12}+\frac{13\cdots 88}{59\cdots 99}a^{11}+\frac{10\cdots 16}{59\cdots 99}a^{10}+\frac{21\cdots 81}{59\cdots 99}a^{9}+\frac{14\cdots 33}{59\cdots 99}a^{8}-\frac{80\cdots 06}{59\cdots 99}a^{7}+\frac{24\cdots 99}{59\cdots 99}a^{6}+\frac{39\cdots 38}{59\cdots 99}a^{5}+\frac{14\cdots 62}{59\cdots 99}a^{4}-\frac{19\cdots 08}{59\cdots 99}a^{3}+\frac{13\cdots 35}{59\cdots 99}a^{2}-\frac{23\cdots 47}{59\cdots 99}a+\frac{94\cdots 39}{59\cdots 99}$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
oscar: basis(OK)
Ideal class group : not computed
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
oscar: class_group(K)
Narrow class group : not computed
sage: K.narrow_class_group().invariants()
gp: bnfnarrow(K)
magma: NarrowClassGroup(K);
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank : $44$
sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
Torsion generator :
\( -1 \)
(order $2$)
sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
Fundamental units : not computed
sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
Regulator : not computed
sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
\[
\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{45}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{612823173021751971297676000847719042376493061735873445231828455051262946540529457157884846548736505117837633099361}}\cr\mathstrut & \text{
some values not computed }
\end{aligned}\]
sage: # self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 250*x^43 - 57*x^42 + 27766*x^41 + 34148*x^40 - 1801054*x^39 - 3701713*x^38 + 75995397*x^37 + 210980315*x^36 - 2204269403*x^35 - 7656169786*x^34 + 45208500184*x^33 + 192019854445*x^32 - 660457840142*x^31 - 3478319662546*x^30 + 6740250648134*x^29 + 46682393472693*x^28 - 44214268231149*x^27 - 471014331370572*x^26 + 119457837724165*x^25 + 3599175944415558*x^24 + 920658436866528*x^23 - 20872201046519003*x^22 - 13494994939768731*x^21 + 91678287510298882*x^20 + 87997267245853232*x^19 - 303360026160716188*x^18 - 371303902979085816*x^17 + 749732931610001378*x^16 + 1094855896004641434*x^15 - 1366727950240442050*x^14 - 2306120975093560007*x^13 + 1803267431605382487*x^12 + 3471556977526533885*x^11 - 1666809346078423573*x^10 - 3682047656706158942*x^9 + 1008367868417943528*x^8 + 2668021411897921137*x^7 - 327662726329807390*x^6 - 1248245094003212175*x^5 + 152924933759221*x^4 + 338163088283119511*x^3 + 38015736547359269*x^2 - 40401517332214916*x - 8937046621536643)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
gp: \\ self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^45 - x^44 - 250*x^43 - 57*x^42 + 27766*x^41 + 34148*x^40 - 1801054*x^39 - 3701713*x^38 + 75995397*x^37 + 210980315*x^36 - 2204269403*x^35 - 7656169786*x^34 + 45208500184*x^33 + 192019854445*x^32 - 660457840142*x^31 - 3478319662546*x^30 + 6740250648134*x^29 + 46682393472693*x^28 - 44214268231149*x^27 - 471014331370572*x^26 + 119457837724165*x^25 + 3599175944415558*x^24 + 920658436866528*x^23 - 20872201046519003*x^22 - 13494994939768731*x^21 + 91678287510298882*x^20 + 87997267245853232*x^19 - 303360026160716188*x^18 - 371303902979085816*x^17 + 749732931610001378*x^16 + 1094855896004641434*x^15 - 1366727950240442050*x^14 - 2306120975093560007*x^13 + 1803267431605382487*x^12 + 3471556977526533885*x^11 - 1666809346078423573*x^10 - 3682047656706158942*x^9 + 1008367868417943528*x^8 + 2668021411897921137*x^7 - 327662726329807390*x^6 - 1248245094003212175*x^5 + 152924933759221*x^4 + 338163088283119511*x^3 + 38015736547359269*x^2 - 40401517332214916*x - 8937046621536643, 1);
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
magma: /* self-contained Magma code snippet to compute the analytic class number formula */
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - x^44 - 250*x^43 - 57*x^42 + 27766*x^41 + 34148*x^40 - 1801054*x^39 - 3701713*x^38 + 75995397*x^37 + 210980315*x^36 - 2204269403*x^35 - 7656169786*x^34 + 45208500184*x^33 + 192019854445*x^32 - 660457840142*x^31 - 3478319662546*x^30 + 6740250648134*x^29 + 46682393472693*x^28 - 44214268231149*x^27 - 471014331370572*x^26 + 119457837724165*x^25 + 3599175944415558*x^24 + 920658436866528*x^23 - 20872201046519003*x^22 - 13494994939768731*x^21 + 91678287510298882*x^20 + 87997267245853232*x^19 - 303360026160716188*x^18 - 371303902979085816*x^17 + 749732931610001378*x^16 + 1094855896004641434*x^15 - 1366727950240442050*x^14 - 2306120975093560007*x^13 + 1803267431605382487*x^12 + 3471556977526533885*x^11 - 1666809346078423573*x^10 - 3682047656706158942*x^9 + 1008367868417943528*x^8 + 2668021411897921137*x^7 - 327662726329807390*x^6 - 1248245094003212175*x^5 + 152924933759221*x^4 + 338163088283119511*x^3 + 38015736547359269*x^2 - 40401517332214916*x - 8937046621536643);
OK := Integers(K); DK := Discriminant(OK);
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
hK := #clK; wK := #TorsionSubgroup(UK);
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
oscar: # self-contained Oscar code snippet to compute the analytic class number formula
Qx, x = polynomial_ring(QQ); K, a = number_field(x^45 - x^44 - 250*x^43 - 57*x^42 + 27766*x^41 + 34148*x^40 - 1801054*x^39 - 3701713*x^38 + 75995397*x^37 + 210980315*x^36 - 2204269403*x^35 - 7656169786*x^34 + 45208500184*x^33 + 192019854445*x^32 - 660457840142*x^31 - 3478319662546*x^30 + 6740250648134*x^29 + 46682393472693*x^28 - 44214268231149*x^27 - 471014331370572*x^26 + 119457837724165*x^25 + 3599175944415558*x^24 + 920658436866528*x^23 - 20872201046519003*x^22 - 13494994939768731*x^21 + 91678287510298882*x^20 + 87997267245853232*x^19 - 303360026160716188*x^18 - 371303902979085816*x^17 + 749732931610001378*x^16 + 1094855896004641434*x^15 - 1366727950240442050*x^14 - 2306120975093560007*x^13 + 1803267431605382487*x^12 + 3471556977526533885*x^11 - 1666809346078423573*x^10 - 3682047656706158942*x^9 + 1008367868417943528*x^8 + 2668021411897921137*x^7 - 327662726329807390*x^6 - 1248245094003212175*x^5 + 152924933759221*x^4 + 338163088283119511*x^3 + 38015736547359269*x^2 - 40401517332214916*x - 8937046621536643);
OK = ring_of_integers(K); DK = discriminant(OK);
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
hK = order(clK); wK = torsion_units_order(K);
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
$C_{45}$ (as 45T1 ):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K);
degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(L)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
$p$
$2$
$3$
$5$
$7$
$11$
$13$
$17$
$19$
$23$
$29$
$31$
$37$
$41$
$43$
$47$
$53$
$59$
Cycle type
$45$
$45$
${\href{/padicField/5.9.0.1}{9} }^{5}$
$15^{3}$
$15^{3}$
$45$
$45$
R
$45$
$45$
R
${\href{/padicField/37.3.0.1}{3} }^{15}$
$45$
$45$
$45$
$45$
$45$
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
sage: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari:
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
magma: // to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma:
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
oscar: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar:
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
(0) (0) (2) (3) (5) (7) (11) (13) (17) (19) (23) (29) (31) (37) (41) (43) (47) (53) (59)