# SageMath code for working with number field 45.45.299215681303998835585125432825671967739342947202402933846152911778748517690473818220198154449462890625.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^45 - 5*x^44 - 120*x^43 + 570*x^42 + 6560*x^41 - 29130*x^40 - 216795*x^39 + 884935*x^38 + 4846835*x^37 - 17873115*x^36 - 77748559*x^35 + 254358990*x^34 + 926664900*x^33 - 2637505030*x^32 - 8389061335*x^31 + 20318079721*x^30 + 58494148730*x^29 - 117428976980*x^28 - 316667682495*x^27 + 510052425895*x^26 + 1335050206763*x^25 - 1653394093375*x^24 - 4375338382740*x^23 + 3923851568060*x^22 + 11069977015865*x^21 - 6532787291841*x^20 - 21348397264600*x^19 + 6845293868685*x^18 + 30760204370920*x^17 - 2712180162090*x^16 - 32145143355065*x^15 - 3532224571660*x^14 + 23314933370325*x^13 + 6500465979650*x^12 - 10976198292280*x^11 - 4703287953351*x^10 + 3011509345140*x^9 + 1752830160915*x^8 - 400149323895*x^7 - 327698710405*x^6 + 19849150584*x^5 + 30510229725*x^4 + 7497705*x^3 - 1362119415*x^2 - 14453695*x + 22808701) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^45 - 5*x^44 - 120*x^43 + 570*x^42 + 6560*x^41 - 29130*x^40 - 216795*x^39 + 884935*x^38 + 4846835*x^37 - 17873115*x^36 - 77748559*x^35 + 254358990*x^34 + 926664900*x^33 - 2637505030*x^32 - 8389061335*x^31 + 20318079721*x^30 + 58494148730*x^29 - 117428976980*x^28 - 316667682495*x^27 + 510052425895*x^26 + 1335050206763*x^25 - 1653394093375*x^24 - 4375338382740*x^23 + 3923851568060*x^22 + 11069977015865*x^21 - 6532787291841*x^20 - 21348397264600*x^19 + 6845293868685*x^18 + 30760204370920*x^17 - 2712180162090*x^16 - 32145143355065*x^15 - 3532224571660*x^14 + 23314933370325*x^13 + 6500465979650*x^12 - 10976198292280*x^11 - 4703287953351*x^10 + 3011509345140*x^9 + 1752830160915*x^8 - 400149323895*x^7 - 327698710405*x^6 + 19849150584*x^5 + 30510229725*x^4 + 7497705*x^3 - 1362119415*x^2 - 14453695*x + 22808701) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]