# SageMath code for working with number field 45.45.2524373658125154706394844918628378076658288807428864227492811533944564375098081397291186234112097170769516929.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^45 - 12*x^44 - 80*x^43 + 1424*x^42 + 1516*x^41 - 74554*x^40 + 63158*x^39 + 2282501*x^38 - 4255902*x^37 - 45636421*x^36 + 116693559*x^35 + 630121996*x^34 - 1971613347*x^33 - 6193698077*x^32 + 22855343401*x^31 + 44007670585*x^30 - 190617019593*x^29 - 226920195907*x^28 + 1172746429282*x^27 + 842990049201*x^26 - 5394671280584*x^25 - 2206384597765*x^24 + 18666651459717*x^23 + 3871477687999*x^22 - 48596558981735*x^21 - 4036750693451*x^20 + 94693820108958*x^19 + 1546861746446*x^18 - 136570614884744*x^17 + 956863921562*x^16 + 143064103358001*x^15 + 102341290612*x^14 - 105649963477592*x^13 - 2816833651750*x^12 + 52484763220205*x^11 + 2919265367283*x^10 - 16311452643376*x^9 - 1104335997267*x^8 + 2857645920655*x^7 + 105919440856*x^6 - 255094574859*x^5 + 8466426668*x^4 + 8654209646*x^3 - 1026667213*x^2 + 14388119*x + 1507921) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^45 - 12*x^44 - 80*x^43 + 1424*x^42 + 1516*x^41 - 74554*x^40 + 63158*x^39 + 2282501*x^38 - 4255902*x^37 - 45636421*x^36 + 116693559*x^35 + 630121996*x^34 - 1971613347*x^33 - 6193698077*x^32 + 22855343401*x^31 + 44007670585*x^30 - 190617019593*x^29 - 226920195907*x^28 + 1172746429282*x^27 + 842990049201*x^26 - 5394671280584*x^25 - 2206384597765*x^24 + 18666651459717*x^23 + 3871477687999*x^22 - 48596558981735*x^21 - 4036750693451*x^20 + 94693820108958*x^19 + 1546861746446*x^18 - 136570614884744*x^17 + 956863921562*x^16 + 143064103358001*x^15 + 102341290612*x^14 - 105649963477592*x^13 - 2816833651750*x^12 + 52484763220205*x^11 + 2919265367283*x^10 - 16311452643376*x^9 - 1104335997267*x^8 + 2857645920655*x^7 + 105919440856*x^6 - 255094574859*x^5 + 8466426668*x^4 + 8654209646*x^3 - 1026667213*x^2 + 14388119*x + 1507921) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]