Properties

Label 45.45.182...361.1
Degree $45$
Signature $[45, 0]$
Discriminant $1.823\times 10^{120}$
Root discriminant \(470.39\)
Ramified prime $541$
Class number not computed
Class group not computed
Galois group $C_{45}$ (as 45T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 264*x^43 + 577*x^42 + 30504*x^41 - 98120*x^40 - 2018702*x^39 + 8460944*x^38 + 84492738*x^37 - 444867299*x^36 - 2320200050*x^35 + 15600272993*x^34 + 41082574326*x^33 - 383669845519*x^32 - 401615692215*x^31 + 6813186987549*x^30 - 248705213777*x^29 - 88665690143496*x^28 + 76259461552137*x^27 + 847486273951872*x^26 - 1335888656272773*x^25 - 5868838401907173*x^24 + 13675801545862322*x^23 + 28183961581580635*x^22 - 95456165563516555*x^21 - 81692357941176698*x^20 + 471789373754560507*x^19 + 45987513402865445*x^18 - 1649280428399137801*x^17 + 754474066803116171*x^16 + 3953734685891549836*x^15 - 3735967195252037225*x^14 - 5995511996337817154*x^13 + 9200133845176559614*x^12 + 4440745936331373641*x^11 - 13174072290529526814*x^10 + 1114529216279611047*x^9 + 10493237142444370059*x^8 - 4803592251955912900*x^7 - 3788065733722662878*x^6 + 3204309942238309333*x^5 + 171253707101259988*x^4 - 725658632317293676*x^3 + 133177483664861744*x^2 + 42013292907430397*x - 11589172153099133)
 
gp: K = bnfinit(y^45 - y^44 - 264*y^43 + 577*y^42 + 30504*y^41 - 98120*y^40 - 2018702*y^39 + 8460944*y^38 + 84492738*y^37 - 444867299*y^36 - 2320200050*y^35 + 15600272993*y^34 + 41082574326*y^33 - 383669845519*y^32 - 401615692215*y^31 + 6813186987549*y^30 - 248705213777*y^29 - 88665690143496*y^28 + 76259461552137*y^27 + 847486273951872*y^26 - 1335888656272773*y^25 - 5868838401907173*y^24 + 13675801545862322*y^23 + 28183961581580635*y^22 - 95456165563516555*y^21 - 81692357941176698*y^20 + 471789373754560507*y^19 + 45987513402865445*y^18 - 1649280428399137801*y^17 + 754474066803116171*y^16 + 3953734685891549836*y^15 - 3735967195252037225*y^14 - 5995511996337817154*y^13 + 9200133845176559614*y^12 + 4440745936331373641*y^11 - 13174072290529526814*y^10 + 1114529216279611047*y^9 + 10493237142444370059*y^8 - 4803592251955912900*y^7 - 3788065733722662878*y^6 + 3204309942238309333*y^5 + 171253707101259988*y^4 - 725658632317293676*y^3 + 133177483664861744*y^2 + 42013292907430397*y - 11589172153099133, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - x^44 - 264*x^43 + 577*x^42 + 30504*x^41 - 98120*x^40 - 2018702*x^39 + 8460944*x^38 + 84492738*x^37 - 444867299*x^36 - 2320200050*x^35 + 15600272993*x^34 + 41082574326*x^33 - 383669845519*x^32 - 401615692215*x^31 + 6813186987549*x^30 - 248705213777*x^29 - 88665690143496*x^28 + 76259461552137*x^27 + 847486273951872*x^26 - 1335888656272773*x^25 - 5868838401907173*x^24 + 13675801545862322*x^23 + 28183961581580635*x^22 - 95456165563516555*x^21 - 81692357941176698*x^20 + 471789373754560507*x^19 + 45987513402865445*x^18 - 1649280428399137801*x^17 + 754474066803116171*x^16 + 3953734685891549836*x^15 - 3735967195252037225*x^14 - 5995511996337817154*x^13 + 9200133845176559614*x^12 + 4440745936331373641*x^11 - 13174072290529526814*x^10 + 1114529216279611047*x^9 + 10493237142444370059*x^8 - 4803592251955912900*x^7 - 3788065733722662878*x^6 + 3204309942238309333*x^5 + 171253707101259988*x^4 - 725658632317293676*x^3 + 133177483664861744*x^2 + 42013292907430397*x - 11589172153099133);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - x^44 - 264*x^43 + 577*x^42 + 30504*x^41 - 98120*x^40 - 2018702*x^39 + 8460944*x^38 + 84492738*x^37 - 444867299*x^36 - 2320200050*x^35 + 15600272993*x^34 + 41082574326*x^33 - 383669845519*x^32 - 401615692215*x^31 + 6813186987549*x^30 - 248705213777*x^29 - 88665690143496*x^28 + 76259461552137*x^27 + 847486273951872*x^26 - 1335888656272773*x^25 - 5868838401907173*x^24 + 13675801545862322*x^23 + 28183961581580635*x^22 - 95456165563516555*x^21 - 81692357941176698*x^20 + 471789373754560507*x^19 + 45987513402865445*x^18 - 1649280428399137801*x^17 + 754474066803116171*x^16 + 3953734685891549836*x^15 - 3735967195252037225*x^14 - 5995511996337817154*x^13 + 9200133845176559614*x^12 + 4440745936331373641*x^11 - 13174072290529526814*x^10 + 1114529216279611047*x^9 + 10493237142444370059*x^8 - 4803592251955912900*x^7 - 3788065733722662878*x^6 + 3204309942238309333*x^5 + 171253707101259988*x^4 - 725658632317293676*x^3 + 133177483664861744*x^2 + 42013292907430397*x - 11589172153099133)
 

\( x^{45} - x^{44} - 264 x^{43} + 577 x^{42} + 30504 x^{41} - 98120 x^{40} - 2018702 x^{39} + \cdots - 11\!\cdots\!33 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $45$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[45, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(182\!\cdots\!361\) \(\medspace = 541^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(470.39\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $541^{44/45}\approx 470.3915895630539$
Ramified primes:   \(541\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $45$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(541\)
Dirichlet character group:    $\lbrace$$\chi_{541}(1,·)$, $\chi_{541}(129,·)$, $\chi_{541}(265,·)$, $\chi_{541}(140,·)$, $\chi_{541}(15,·)$, $\chi_{541}(400,·)$, $\chi_{541}(277,·)$, $\chi_{541}(534,·)$, $\chi_{541}(411,·)$, $\chi_{541}(27,·)$, $\chi_{541}(241,·)$, $\chi_{541}(174,·)$, $\chi_{541}(48,·)$, $\chi_{541}(49,·)$, $\chi_{541}(179,·)$, $\chi_{541}(436,·)$, $\chi_{541}(309,·)$, $\chi_{541}(521,·)$, $\chi_{541}(312,·)$, $\chi_{541}(188,·)$, $\chi_{541}(446,·)$, $\chi_{541}(448,·)$, $\chi_{541}(194,·)$, $\chi_{541}(198,·)$, $\chi_{541}(205,·)$, $\chi_{541}(207,·)$, $\chi_{541}(214,·)$, $\chi_{541}(477,·)$, $\chi_{541}(352,·)$, $\chi_{541}(225,·)$, $\chi_{541}(228,·)$, $\chi_{541}(102,·)$, $\chi_{541}(307,·)$, $\chi_{541}(124,·)$, $\chi_{541}(237,·)$, $\chi_{541}(110,·)$, $\chi_{541}(368,·)$, $\chi_{541}(369,·)$, $\chi_{541}(370,·)$, $\chi_{541}(115,·)$, $\chi_{541}(505,·)$, $\chi_{541}(122,·)$, $\chi_{541}(252,·)$, $\chi_{541}(125,·)$, $\chi_{541}(405,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $\frac{1}{770977}a^{43}+\frac{293292}{770977}a^{42}-\frac{83506}{770977}a^{41}+\frac{79994}{770977}a^{40}+\frac{5316}{770977}a^{39}+\frac{330939}{770977}a^{38}-\frac{78394}{770977}a^{37}+\frac{381110}{770977}a^{36}+\frac{266830}{770977}a^{35}-\frac{336792}{770977}a^{34}-\frac{228610}{770977}a^{33}+\frac{241831}{770977}a^{32}-\frac{112139}{770977}a^{31}-\frac{53412}{770977}a^{30}-\frac{174350}{770977}a^{29}+\frac{27724}{770977}a^{28}-\frac{328825}{770977}a^{27}-\frac{253388}{770977}a^{26}+\frac{158669}{770977}a^{25}-\frac{293386}{770977}a^{24}-\frac{207655}{770977}a^{23}-\frac{62720}{770977}a^{22}+\frac{346040}{770977}a^{21}-\frac{365658}{770977}a^{20}-\frac{176602}{770977}a^{19}-\frac{36212}{770977}a^{18}-\frac{72988}{770977}a^{17}+\frac{273794}{770977}a^{16}-\frac{220528}{770977}a^{15}+\frac{92685}{770977}a^{14}-\frac{113494}{770977}a^{13}+\frac{3938}{770977}a^{12}-\frac{341521}{770977}a^{11}+\frac{36758}{770977}a^{10}-\frac{332276}{770977}a^{9}-\frac{163732}{770977}a^{8}+\frac{111589}{770977}a^{7}+\frac{267872}{770977}a^{6}-\frac{40710}{770977}a^{5}+\frac{52653}{770977}a^{4}-\frac{269383}{770977}a^{3}+\frac{316387}{770977}a^{2}+\frac{44660}{770977}a+\frac{252673}{770977}$, $\frac{1}{49\!\cdots\!77}a^{44}-\frac{21\!\cdots\!66}{49\!\cdots\!77}a^{43}+\frac{22\!\cdots\!87}{49\!\cdots\!77}a^{42}-\frac{19\!\cdots\!02}{49\!\cdots\!77}a^{41}+\frac{73\!\cdots\!14}{49\!\cdots\!77}a^{40}+\frac{17\!\cdots\!29}{49\!\cdots\!77}a^{39}-\frac{19\!\cdots\!96}{49\!\cdots\!77}a^{38}+\frac{15\!\cdots\!19}{49\!\cdots\!77}a^{37}+\frac{13\!\cdots\!88}{49\!\cdots\!77}a^{36}-\frac{74\!\cdots\!31}{49\!\cdots\!77}a^{35}+\frac{16\!\cdots\!06}{49\!\cdots\!77}a^{34}-\frac{11\!\cdots\!12}{49\!\cdots\!77}a^{33}+\frac{16\!\cdots\!12}{49\!\cdots\!77}a^{32}-\frac{14\!\cdots\!84}{49\!\cdots\!77}a^{31}-\frac{25\!\cdots\!53}{49\!\cdots\!77}a^{30}-\frac{13\!\cdots\!30}{49\!\cdots\!77}a^{29}-\frac{86\!\cdots\!44}{49\!\cdots\!77}a^{28}-\frac{24\!\cdots\!23}{49\!\cdots\!77}a^{27}+\frac{22\!\cdots\!60}{49\!\cdots\!77}a^{26}+\frac{22\!\cdots\!03}{49\!\cdots\!77}a^{25}-\frac{17\!\cdots\!65}{49\!\cdots\!77}a^{24}-\frac{83\!\cdots\!80}{49\!\cdots\!77}a^{23}+\frac{20\!\cdots\!62}{49\!\cdots\!77}a^{22}-\frac{16\!\cdots\!84}{49\!\cdots\!77}a^{21}-\frac{24\!\cdots\!64}{49\!\cdots\!77}a^{20}-\frac{16\!\cdots\!88}{49\!\cdots\!77}a^{19}-\frac{11\!\cdots\!21}{49\!\cdots\!77}a^{18}+\frac{91\!\cdots\!17}{49\!\cdots\!77}a^{17}+\frac{23\!\cdots\!37}{49\!\cdots\!77}a^{16}+\frac{11\!\cdots\!13}{49\!\cdots\!77}a^{15}-\frac{11\!\cdots\!80}{49\!\cdots\!77}a^{14}-\frac{11\!\cdots\!01}{49\!\cdots\!77}a^{13}-\frac{10\!\cdots\!26}{49\!\cdots\!77}a^{12}-\frac{32\!\cdots\!07}{49\!\cdots\!77}a^{11}+\frac{20\!\cdots\!95}{49\!\cdots\!77}a^{10}-\frac{24\!\cdots\!90}{49\!\cdots\!77}a^{9}-\frac{12\!\cdots\!73}{49\!\cdots\!77}a^{8}+\frac{14\!\cdots\!43}{49\!\cdots\!77}a^{7}-\frac{22\!\cdots\!90}{49\!\cdots\!77}a^{6}-\frac{26\!\cdots\!06}{49\!\cdots\!77}a^{5}+\frac{44\!\cdots\!66}{49\!\cdots\!77}a^{4}+\frac{68\!\cdots\!65}{49\!\cdots\!77}a^{3}-\frac{98\!\cdots\!30}{49\!\cdots\!77}a^{2}+\frac{15\!\cdots\!98}{49\!\cdots\!77}a-\frac{11\!\cdots\!15}{49\!\cdots\!77}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $44$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 264*x^43 + 577*x^42 + 30504*x^41 - 98120*x^40 - 2018702*x^39 + 8460944*x^38 + 84492738*x^37 - 444867299*x^36 - 2320200050*x^35 + 15600272993*x^34 + 41082574326*x^33 - 383669845519*x^32 - 401615692215*x^31 + 6813186987549*x^30 - 248705213777*x^29 - 88665690143496*x^28 + 76259461552137*x^27 + 847486273951872*x^26 - 1335888656272773*x^25 - 5868838401907173*x^24 + 13675801545862322*x^23 + 28183961581580635*x^22 - 95456165563516555*x^21 - 81692357941176698*x^20 + 471789373754560507*x^19 + 45987513402865445*x^18 - 1649280428399137801*x^17 + 754474066803116171*x^16 + 3953734685891549836*x^15 - 3735967195252037225*x^14 - 5995511996337817154*x^13 + 9200133845176559614*x^12 + 4440745936331373641*x^11 - 13174072290529526814*x^10 + 1114529216279611047*x^9 + 10493237142444370059*x^8 - 4803592251955912900*x^7 - 3788065733722662878*x^6 + 3204309942238309333*x^5 + 171253707101259988*x^4 - 725658632317293676*x^3 + 133177483664861744*x^2 + 42013292907430397*x - 11589172153099133)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^45 - x^44 - 264*x^43 + 577*x^42 + 30504*x^41 - 98120*x^40 - 2018702*x^39 + 8460944*x^38 + 84492738*x^37 - 444867299*x^36 - 2320200050*x^35 + 15600272993*x^34 + 41082574326*x^33 - 383669845519*x^32 - 401615692215*x^31 + 6813186987549*x^30 - 248705213777*x^29 - 88665690143496*x^28 + 76259461552137*x^27 + 847486273951872*x^26 - 1335888656272773*x^25 - 5868838401907173*x^24 + 13675801545862322*x^23 + 28183961581580635*x^22 - 95456165563516555*x^21 - 81692357941176698*x^20 + 471789373754560507*x^19 + 45987513402865445*x^18 - 1649280428399137801*x^17 + 754474066803116171*x^16 + 3953734685891549836*x^15 - 3735967195252037225*x^14 - 5995511996337817154*x^13 + 9200133845176559614*x^12 + 4440745936331373641*x^11 - 13174072290529526814*x^10 + 1114529216279611047*x^9 + 10493237142444370059*x^8 - 4803592251955912900*x^7 - 3788065733722662878*x^6 + 3204309942238309333*x^5 + 171253707101259988*x^4 - 725658632317293676*x^3 + 133177483664861744*x^2 + 42013292907430397*x - 11589172153099133, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^45 - x^44 - 264*x^43 + 577*x^42 + 30504*x^41 - 98120*x^40 - 2018702*x^39 + 8460944*x^38 + 84492738*x^37 - 444867299*x^36 - 2320200050*x^35 + 15600272993*x^34 + 41082574326*x^33 - 383669845519*x^32 - 401615692215*x^31 + 6813186987549*x^30 - 248705213777*x^29 - 88665690143496*x^28 + 76259461552137*x^27 + 847486273951872*x^26 - 1335888656272773*x^25 - 5868838401907173*x^24 + 13675801545862322*x^23 + 28183961581580635*x^22 - 95456165563516555*x^21 - 81692357941176698*x^20 + 471789373754560507*x^19 + 45987513402865445*x^18 - 1649280428399137801*x^17 + 754474066803116171*x^16 + 3953734685891549836*x^15 - 3735967195252037225*x^14 - 5995511996337817154*x^13 + 9200133845176559614*x^12 + 4440745936331373641*x^11 - 13174072290529526814*x^10 + 1114529216279611047*x^9 + 10493237142444370059*x^8 - 4803592251955912900*x^7 - 3788065733722662878*x^6 + 3204309942238309333*x^5 + 171253707101259988*x^4 - 725658632317293676*x^3 + 133177483664861744*x^2 + 42013292907430397*x - 11589172153099133);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - x^44 - 264*x^43 + 577*x^42 + 30504*x^41 - 98120*x^40 - 2018702*x^39 + 8460944*x^38 + 84492738*x^37 - 444867299*x^36 - 2320200050*x^35 + 15600272993*x^34 + 41082574326*x^33 - 383669845519*x^32 - 401615692215*x^31 + 6813186987549*x^30 - 248705213777*x^29 - 88665690143496*x^28 + 76259461552137*x^27 + 847486273951872*x^26 - 1335888656272773*x^25 - 5868838401907173*x^24 + 13675801545862322*x^23 + 28183961581580635*x^22 - 95456165563516555*x^21 - 81692357941176698*x^20 + 471789373754560507*x^19 + 45987513402865445*x^18 - 1649280428399137801*x^17 + 754474066803116171*x^16 + 3953734685891549836*x^15 - 3735967195252037225*x^14 - 5995511996337817154*x^13 + 9200133845176559614*x^12 + 4440745936331373641*x^11 - 13174072290529526814*x^10 + 1114529216279611047*x^9 + 10493237142444370059*x^8 - 4803592251955912900*x^7 - 3788065733722662878*x^6 + 3204309942238309333*x^5 + 171253707101259988*x^4 - 725658632317293676*x^3 + 133177483664861744*x^2 + 42013292907430397*x - 11589172153099133);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{45}$ (as 45T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 45
The 45 conjugacy class representatives for $C_{45}$
Character table for $C_{45}$ is not computed

Intermediate fields

3.3.292681.1, 5.5.85662167761.1, 9.9.7338006985513707753121.1, 15.15.183976228451617878805132559872306799161.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $45$ $45$ $45$ $15^{3}$ ${\href{/padicField/11.9.0.1}{9} }^{5}$ $45$ ${\href{/padicField/17.5.0.1}{5} }^{9}$ $45$ $45$ ${\href{/padicField/29.5.0.1}{5} }^{9}$ ${\href{/padicField/31.9.0.1}{9} }^{5}$ $45$ ${\href{/padicField/41.9.0.1}{9} }^{5}$ $45$ $45$ $45$ $45$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(541\) Copy content Toggle raw display Deg $45$$45$$1$$44$