Properties

Label 45.45.158...121.1
Degree $45$
Signature $[45, 0]$
Discriminant $1.590\times 10^{123}$
Root discriminant \(546.77\)
Ramified prime $631$
Class number not computed
Class group not computed
Galois group $C_{45}$ (as 45T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 308*x^43 + 243*x^42 + 42031*x^41 - 29629*x^40 - 3398056*x^39 + 2297498*x^38 + 183048901*x^37 - 121032253*x^36 - 6996152064*x^35 + 4446576994*x^34 + 197152571564*x^33 - 115431928666*x^32 - 4201483097868*x^31 + 2121963890250*x^30 + 68878837826074*x^29 - 27147209842906*x^28 - 878308230905331*x^27 + 225497065522490*x^26 + 8763539163452549*x^25 - 871990800564410*x^24 - 68512286719810484*x^23 - 4780528095474003*x^22 + 418372779020858328*x^21 + 101848276044631524*x^20 - 1980431115576277921*x^19 - 822214007057581210*x^18 + 7177072759573430673*x^17 + 4169540206326707286*x^16 - 19552998002023848240*x^15 - 14466898842903568113*x^14 + 39018305246160367761*x^13 + 34927937499502295142*x^12 - 54906348400741785697*x^11 - 58013755547611372583*x^10 + 51353626114208160219*x^9 + 64112838817587499528*x^8 - 28749362416671453687*x^7 - 44330490069503914218*x^6 + 7543106125554272962*x^5 + 17141372833656407962*x^4 - 119032548118113070*x^3 - 2928899438689275293*x^2 - 140090069545874565*x + 115829050127578637)
 
gp: K = bnfinit(y^45 - y^44 - 308*y^43 + 243*y^42 + 42031*y^41 - 29629*y^40 - 3398056*y^39 + 2297498*y^38 + 183048901*y^37 - 121032253*y^36 - 6996152064*y^35 + 4446576994*y^34 + 197152571564*y^33 - 115431928666*y^32 - 4201483097868*y^31 + 2121963890250*y^30 + 68878837826074*y^29 - 27147209842906*y^28 - 878308230905331*y^27 + 225497065522490*y^26 + 8763539163452549*y^25 - 871990800564410*y^24 - 68512286719810484*y^23 - 4780528095474003*y^22 + 418372779020858328*y^21 + 101848276044631524*y^20 - 1980431115576277921*y^19 - 822214007057581210*y^18 + 7177072759573430673*y^17 + 4169540206326707286*y^16 - 19552998002023848240*y^15 - 14466898842903568113*y^14 + 39018305246160367761*y^13 + 34927937499502295142*y^12 - 54906348400741785697*y^11 - 58013755547611372583*y^10 + 51353626114208160219*y^9 + 64112838817587499528*y^8 - 28749362416671453687*y^7 - 44330490069503914218*y^6 + 7543106125554272962*y^5 + 17141372833656407962*y^4 - 119032548118113070*y^3 - 2928899438689275293*y^2 - 140090069545874565*y + 115829050127578637, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - x^44 - 308*x^43 + 243*x^42 + 42031*x^41 - 29629*x^40 - 3398056*x^39 + 2297498*x^38 + 183048901*x^37 - 121032253*x^36 - 6996152064*x^35 + 4446576994*x^34 + 197152571564*x^33 - 115431928666*x^32 - 4201483097868*x^31 + 2121963890250*x^30 + 68878837826074*x^29 - 27147209842906*x^28 - 878308230905331*x^27 + 225497065522490*x^26 + 8763539163452549*x^25 - 871990800564410*x^24 - 68512286719810484*x^23 - 4780528095474003*x^22 + 418372779020858328*x^21 + 101848276044631524*x^20 - 1980431115576277921*x^19 - 822214007057581210*x^18 + 7177072759573430673*x^17 + 4169540206326707286*x^16 - 19552998002023848240*x^15 - 14466898842903568113*x^14 + 39018305246160367761*x^13 + 34927937499502295142*x^12 - 54906348400741785697*x^11 - 58013755547611372583*x^10 + 51353626114208160219*x^9 + 64112838817587499528*x^8 - 28749362416671453687*x^7 - 44330490069503914218*x^6 + 7543106125554272962*x^5 + 17141372833656407962*x^4 - 119032548118113070*x^3 - 2928899438689275293*x^2 - 140090069545874565*x + 115829050127578637);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - x^44 - 308*x^43 + 243*x^42 + 42031*x^41 - 29629*x^40 - 3398056*x^39 + 2297498*x^38 + 183048901*x^37 - 121032253*x^36 - 6996152064*x^35 + 4446576994*x^34 + 197152571564*x^33 - 115431928666*x^32 - 4201483097868*x^31 + 2121963890250*x^30 + 68878837826074*x^29 - 27147209842906*x^28 - 878308230905331*x^27 + 225497065522490*x^26 + 8763539163452549*x^25 - 871990800564410*x^24 - 68512286719810484*x^23 - 4780528095474003*x^22 + 418372779020858328*x^21 + 101848276044631524*x^20 - 1980431115576277921*x^19 - 822214007057581210*x^18 + 7177072759573430673*x^17 + 4169540206326707286*x^16 - 19552998002023848240*x^15 - 14466898842903568113*x^14 + 39018305246160367761*x^13 + 34927937499502295142*x^12 - 54906348400741785697*x^11 - 58013755547611372583*x^10 + 51353626114208160219*x^9 + 64112838817587499528*x^8 - 28749362416671453687*x^7 - 44330490069503914218*x^6 + 7543106125554272962*x^5 + 17141372833656407962*x^4 - 119032548118113070*x^3 - 2928899438689275293*x^2 - 140090069545874565*x + 115829050127578637)
 

\( x^{45} - x^{44} - 308 x^{43} + 243 x^{42} + 42031 x^{41} - 29629 x^{40} - 3398056 x^{39} + \cdots + 11\!\cdots\!37 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $45$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[45, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(158\!\cdots\!121\) \(\medspace = 631^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(546.77\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $631^{44/45}\approx 546.7722747055357$
Ramified primes:   \(631\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $45$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(631\)
Dirichlet character group:    $\lbrace$$\chi_{631}(128,·)$, $\chi_{631}(1,·)$, $\chi_{631}(2,·)$, $\chi_{631}(4,·)$, $\chi_{631}(8,·)$, $\chi_{631}(393,·)$, $\chi_{631}(256,·)$, $\chi_{631}(16,·)$, $\chi_{631}(512,·)$, $\chi_{631}(279,·)$, $\chi_{631}(281,·)$, $\chi_{631}(155,·)$, $\chi_{631}(158,·)$, $\chi_{631}(543,·)$, $\chi_{631}(32,·)$, $\chi_{631}(43,·)$, $\chi_{631}(172,·)$, $\chi_{631}(242,·)$, $\chi_{631}(558,·)$, $\chi_{631}(47,·)$, $\chi_{631}(562,·)$, $\chi_{631}(310,·)$, $\chi_{631}(57,·)$, $\chi_{631}(188,·)$, $\chi_{631}(64,·)$, $\chi_{631}(455,·)$, $\chi_{631}(456,·)$, $\chi_{631}(587,·)$, $\chi_{631}(79,·)$, $\chi_{631}(337,·)$, $\chi_{631}(339,·)$, $\chi_{631}(86,·)$, $\chi_{631}(344,·)$, $\chi_{631}(228,·)$, $\chi_{631}(94,·)$, $\chi_{631}(609,·)$, $\chi_{631}(355,·)$, $\chi_{631}(484,·)$, $\chi_{631}(485,·)$, $\chi_{631}(316,·)$, $\chi_{631}(620,·)$, $\chi_{631}(493,·)$, $\chi_{631}(114,·)$, $\chi_{631}(376,·)$, $\chi_{631}(121,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $\frac{1}{132730249}a^{42}-\frac{42528338}{132730249}a^{41}-\frac{12696122}{132730249}a^{40}+\frac{56825354}{132730249}a^{39}-\frac{39123238}{132730249}a^{38}-\frac{50872548}{132730249}a^{37}-\frac{64842237}{132730249}a^{36}-\frac{47099584}{132730249}a^{35}-\frac{20636773}{132730249}a^{34}+\frac{30218358}{132730249}a^{33}-\frac{10890018}{132730249}a^{32}-\frac{48928993}{132730249}a^{31}+\frac{56667538}{132730249}a^{30}+\frac{26958113}{132730249}a^{29}-\frac{55196071}{132730249}a^{28}+\frac{10838373}{132730249}a^{27}-\frac{30945685}{132730249}a^{26}-\frac{15708082}{132730249}a^{25}-\frac{19889178}{132730249}a^{24}+\frac{54018503}{132730249}a^{23}+\frac{27685572}{132730249}a^{22}+\frac{2049416}{132730249}a^{21}+\frac{36934524}{132730249}a^{20}+\frac{60352851}{132730249}a^{19}-\frac{15378953}{132730249}a^{18}+\frac{29310757}{132730249}a^{17}+\frac{56130862}{132730249}a^{16}+\frac{18969348}{132730249}a^{15}+\frac{56166267}{132730249}a^{14}+\frac{49736682}{132730249}a^{13}+\frac{45799638}{132730249}a^{12}+\frac{28260367}{132730249}a^{11}-\frac{23002832}{132730249}a^{10}-\frac{36477398}{132730249}a^{9}+\frac{52772561}{132730249}a^{8}-\frac{40917792}{132730249}a^{7}+\frac{46983586}{132730249}a^{6}+\frac{41628748}{132730249}a^{5}+\frac{45294637}{132730249}a^{4}+\frac{62633709}{132730249}a^{3}+\frac{17971998}{132730249}a^{2}-\frac{1160809}{132730249}a+\frac{41765217}{132730249}$, $\frac{1}{87734694589}a^{43}+\frac{109}{87734694589}a^{42}-\frac{2568494555}{87734694589}a^{41}-\frac{14109422321}{87734694589}a^{40}-\frac{3937667910}{87734694589}a^{39}-\frac{8179139952}{87734694589}a^{38}+\frac{18722611459}{87734694589}a^{37}-\frac{23291387619}{87734694589}a^{36}-\frac{28978233154}{87734694589}a^{35}-\frac{24329880522}{87734694589}a^{34}-\frac{33021385400}{87734694589}a^{33}-\frac{32197885846}{87734694589}a^{32}+\frac{10820853119}{87734694589}a^{31}+\frac{8971626776}{87734694589}a^{30}+\frac{43433873832}{87734694589}a^{29}-\frac{30356686403}{87734694589}a^{28}+\frac{17025277919}{87734694589}a^{27}-\frac{37850058630}{87734694589}a^{26}-\frac{43121154825}{87734694589}a^{25}-\frac{34675820045}{87734694589}a^{24}-\frac{30216000649}{87734694589}a^{23}-\frac{16629705968}{87734694589}a^{22}-\frac{11941629025}{87734694589}a^{21}-\frac{25603158690}{87734694589}a^{20}-\frac{3574109214}{87734694589}a^{19}-\frac{8417996031}{87734694589}a^{18}-\frac{5321977432}{87734694589}a^{17}+\frac{29700892225}{87734694589}a^{16}-\frac{30403314929}{87734694589}a^{15}-\frac{29836500863}{87734694589}a^{14}-\frac{39686810948}{87734694589}a^{13}-\frac{38322360126}{87734694589}a^{12}-\frac{34099146298}{87734694589}a^{11}-\frac{24153175518}{87734694589}a^{10}-\frac{42382311094}{87734694589}a^{9}-\frac{33409357279}{87734694589}a^{8}+\frac{26727078284}{87734694589}a^{7}-\frac{37926450890}{87734694589}a^{6}+\frac{39235976824}{87734694589}a^{5}-\frac{7984893018}{87734694589}a^{4}+\frac{41015519743}{87734694589}a^{3}-\frac{35707175979}{87734694589}a^{2}-\frac{36705194817}{87734694589}a+\frac{11501826015}{87734694589}$, $\frac{1}{37\!\cdots\!81}a^{44}-\frac{20\!\cdots\!42}{37\!\cdots\!81}a^{43}+\frac{65\!\cdots\!34}{37\!\cdots\!81}a^{42}-\frac{15\!\cdots\!90}{37\!\cdots\!81}a^{41}+\frac{16\!\cdots\!05}{37\!\cdots\!81}a^{40}+\frac{17\!\cdots\!02}{37\!\cdots\!81}a^{39}+\frac{65\!\cdots\!06}{37\!\cdots\!81}a^{38}+\frac{67\!\cdots\!63}{37\!\cdots\!81}a^{37}-\frac{68\!\cdots\!62}{37\!\cdots\!81}a^{36}+\frac{10\!\cdots\!83}{37\!\cdots\!81}a^{35}+\frac{17\!\cdots\!04}{37\!\cdots\!81}a^{34}+\frac{11\!\cdots\!54}{37\!\cdots\!81}a^{33}+\frac{14\!\cdots\!40}{37\!\cdots\!81}a^{32}-\frac{10\!\cdots\!98}{37\!\cdots\!81}a^{31}+\frac{13\!\cdots\!46}{37\!\cdots\!81}a^{30}-\frac{12\!\cdots\!22}{37\!\cdots\!81}a^{29}+\frac{12\!\cdots\!57}{37\!\cdots\!81}a^{28}-\frac{17\!\cdots\!26}{37\!\cdots\!81}a^{27}+\frac{10\!\cdots\!62}{37\!\cdots\!81}a^{26}+\frac{72\!\cdots\!33}{37\!\cdots\!81}a^{25}-\frac{61\!\cdots\!63}{37\!\cdots\!81}a^{24}-\frac{11\!\cdots\!70}{37\!\cdots\!81}a^{23}-\frac{95\!\cdots\!71}{37\!\cdots\!81}a^{22}+\frac{64\!\cdots\!33}{37\!\cdots\!81}a^{21}-\frac{55\!\cdots\!94}{37\!\cdots\!81}a^{20}-\frac{10\!\cdots\!90}{37\!\cdots\!81}a^{19}-\frac{16\!\cdots\!04}{37\!\cdots\!81}a^{18}+\frac{13\!\cdots\!65}{37\!\cdots\!81}a^{17}-\frac{79\!\cdots\!00}{37\!\cdots\!81}a^{16}-\frac{46\!\cdots\!70}{37\!\cdots\!81}a^{15}+\frac{62\!\cdots\!92}{37\!\cdots\!81}a^{14}-\frac{63\!\cdots\!44}{37\!\cdots\!81}a^{13}+\frac{14\!\cdots\!38}{37\!\cdots\!81}a^{12}+\frac{13\!\cdots\!65}{37\!\cdots\!81}a^{11}-\frac{16\!\cdots\!43}{37\!\cdots\!81}a^{10}+\frac{11\!\cdots\!89}{37\!\cdots\!81}a^{9}+\frac{67\!\cdots\!41}{37\!\cdots\!81}a^{8}-\frac{33\!\cdots\!25}{37\!\cdots\!81}a^{7}+\frac{13\!\cdots\!01}{37\!\cdots\!81}a^{6}+\frac{50\!\cdots\!98}{37\!\cdots\!81}a^{5}+\frac{40\!\cdots\!88}{37\!\cdots\!81}a^{4}-\frac{17\!\cdots\!49}{37\!\cdots\!81}a^{3}-\frac{79\!\cdots\!21}{37\!\cdots\!81}a^{2}-\frac{15\!\cdots\!05}{37\!\cdots\!81}a-\frac{70\!\cdots\!36}{37\!\cdots\!81}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $44$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^45 - x^44 - 308*x^43 + 243*x^42 + 42031*x^41 - 29629*x^40 - 3398056*x^39 + 2297498*x^38 + 183048901*x^37 - 121032253*x^36 - 6996152064*x^35 + 4446576994*x^34 + 197152571564*x^33 - 115431928666*x^32 - 4201483097868*x^31 + 2121963890250*x^30 + 68878837826074*x^29 - 27147209842906*x^28 - 878308230905331*x^27 + 225497065522490*x^26 + 8763539163452549*x^25 - 871990800564410*x^24 - 68512286719810484*x^23 - 4780528095474003*x^22 + 418372779020858328*x^21 + 101848276044631524*x^20 - 1980431115576277921*x^19 - 822214007057581210*x^18 + 7177072759573430673*x^17 + 4169540206326707286*x^16 - 19552998002023848240*x^15 - 14466898842903568113*x^14 + 39018305246160367761*x^13 + 34927937499502295142*x^12 - 54906348400741785697*x^11 - 58013755547611372583*x^10 + 51353626114208160219*x^9 + 64112838817587499528*x^8 - 28749362416671453687*x^7 - 44330490069503914218*x^6 + 7543106125554272962*x^5 + 17141372833656407962*x^4 - 119032548118113070*x^3 - 2928899438689275293*x^2 - 140090069545874565*x + 115829050127578637)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^45 - x^44 - 308*x^43 + 243*x^42 + 42031*x^41 - 29629*x^40 - 3398056*x^39 + 2297498*x^38 + 183048901*x^37 - 121032253*x^36 - 6996152064*x^35 + 4446576994*x^34 + 197152571564*x^33 - 115431928666*x^32 - 4201483097868*x^31 + 2121963890250*x^30 + 68878837826074*x^29 - 27147209842906*x^28 - 878308230905331*x^27 + 225497065522490*x^26 + 8763539163452549*x^25 - 871990800564410*x^24 - 68512286719810484*x^23 - 4780528095474003*x^22 + 418372779020858328*x^21 + 101848276044631524*x^20 - 1980431115576277921*x^19 - 822214007057581210*x^18 + 7177072759573430673*x^17 + 4169540206326707286*x^16 - 19552998002023848240*x^15 - 14466898842903568113*x^14 + 39018305246160367761*x^13 + 34927937499502295142*x^12 - 54906348400741785697*x^11 - 58013755547611372583*x^10 + 51353626114208160219*x^9 + 64112838817587499528*x^8 - 28749362416671453687*x^7 - 44330490069503914218*x^6 + 7543106125554272962*x^5 + 17141372833656407962*x^4 - 119032548118113070*x^3 - 2928899438689275293*x^2 - 140090069545874565*x + 115829050127578637, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^45 - x^44 - 308*x^43 + 243*x^42 + 42031*x^41 - 29629*x^40 - 3398056*x^39 + 2297498*x^38 + 183048901*x^37 - 121032253*x^36 - 6996152064*x^35 + 4446576994*x^34 + 197152571564*x^33 - 115431928666*x^32 - 4201483097868*x^31 + 2121963890250*x^30 + 68878837826074*x^29 - 27147209842906*x^28 - 878308230905331*x^27 + 225497065522490*x^26 + 8763539163452549*x^25 - 871990800564410*x^24 - 68512286719810484*x^23 - 4780528095474003*x^22 + 418372779020858328*x^21 + 101848276044631524*x^20 - 1980431115576277921*x^19 - 822214007057581210*x^18 + 7177072759573430673*x^17 + 4169540206326707286*x^16 - 19552998002023848240*x^15 - 14466898842903568113*x^14 + 39018305246160367761*x^13 + 34927937499502295142*x^12 - 54906348400741785697*x^11 - 58013755547611372583*x^10 + 51353626114208160219*x^9 + 64112838817587499528*x^8 - 28749362416671453687*x^7 - 44330490069503914218*x^6 + 7543106125554272962*x^5 + 17141372833656407962*x^4 - 119032548118113070*x^3 - 2928899438689275293*x^2 - 140090069545874565*x + 115829050127578637);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - x^44 - 308*x^43 + 243*x^42 + 42031*x^41 - 29629*x^40 - 3398056*x^39 + 2297498*x^38 + 183048901*x^37 - 121032253*x^36 - 6996152064*x^35 + 4446576994*x^34 + 197152571564*x^33 - 115431928666*x^32 - 4201483097868*x^31 + 2121963890250*x^30 + 68878837826074*x^29 - 27147209842906*x^28 - 878308230905331*x^27 + 225497065522490*x^26 + 8763539163452549*x^25 - 871990800564410*x^24 - 68512286719810484*x^23 - 4780528095474003*x^22 + 418372779020858328*x^21 + 101848276044631524*x^20 - 1980431115576277921*x^19 - 822214007057581210*x^18 + 7177072759573430673*x^17 + 4169540206326707286*x^16 - 19552998002023848240*x^15 - 14466898842903568113*x^14 + 39018305246160367761*x^13 + 34927937499502295142*x^12 - 54906348400741785697*x^11 - 58013755547611372583*x^10 + 51353626114208160219*x^9 + 64112838817587499528*x^8 - 28749362416671453687*x^7 - 44330490069503914218*x^6 + 7543106125554272962*x^5 + 17141372833656407962*x^4 - 119032548118113070*x^3 - 2928899438689275293*x^2 - 140090069545874565*x + 115829050127578637);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{45}$ (as 45T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 45
The 45 conjugacy class representatives for $C_{45}$
Character table for $C_{45}$

Intermediate fields

3.3.398161.1, 5.5.158532181921.1, 9.9.25132452704633039250241.1, 15.15.1586393893300992738237335763411468444721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $45$ $45$ ${\href{/padicField/5.5.0.1}{5} }^{9}$ $45$ $45$ $45$ $45$ $45$ $45$ $45$ $45$ ${\href{/padicField/37.9.0.1}{9} }^{5}$ ${\href{/padicField/41.9.0.1}{9} }^{5}$ ${\href{/padicField/43.3.0.1}{3} }^{15}$ $45$ $45$ $45$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(631\) Copy content Toggle raw display Deg $45$$45$$1$$44$