Properties

Label 45.45.131...889.1
Degree $45$
Signature $[45, 0]$
Discriminant $1.320\times 10^{115}$
Root discriminant \(361.60\)
Ramified primes $3,31$
Class number not computed
Class group not computed
Galois group $C_{45}$ (as 45T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^45 - 279*x^43 + 35154*x^41 - 2656173*x^39 + 134805825*x^37 - 97712*x^36 - 4879171809*x^35 + 15188760*x^34 + 130534729785*x^33 - 1029724272*x^32 - 2640630159891*x^31 + 40401785400*x^30 + 40983205856724*x^29 - 1025408245788*x^28 - 492359066860125*x^27 + 17803202551128*x^26 + 4599619564395024*x^25 - 217725540576444*x^24 - 33445772871093027*x^23 + 1898451316158687*x^22 + 188849162457451617*x^21 - 11767696275794211*x^20 - 823332878002131822*x^19 + 50691889157596665*x^18 + 2745818611694276823*x^17 - 142361283528806580*x^16 - 6909518242574323155*x^15 + 208719160865886294*x^14 + 12865209764508264645*x^13 + 83974312294091439*x^12 - 17233171846493521500*x^11 - 1064212231177977606*x^10 + 15917394331044266446*x^9 + 2213346589608828033*x^8 - 9446941004466404511*x^7 - 2292874481029586463*x^6 + 3121786160210636919*x^5 + 1201035215446175088*x^4 - 355273519765875753*x^3 - 247333537481787396*x^2 - 40334300724080106*x - 1806463523301607)
 
gp: K = bnfinit(y^45 - 279*y^43 + 35154*y^41 - 2656173*y^39 + 134805825*y^37 - 97712*y^36 - 4879171809*y^35 + 15188760*y^34 + 130534729785*y^33 - 1029724272*y^32 - 2640630159891*y^31 + 40401785400*y^30 + 40983205856724*y^29 - 1025408245788*y^28 - 492359066860125*y^27 + 17803202551128*y^26 + 4599619564395024*y^25 - 217725540576444*y^24 - 33445772871093027*y^23 + 1898451316158687*y^22 + 188849162457451617*y^21 - 11767696275794211*y^20 - 823332878002131822*y^19 + 50691889157596665*y^18 + 2745818611694276823*y^17 - 142361283528806580*y^16 - 6909518242574323155*y^15 + 208719160865886294*y^14 + 12865209764508264645*y^13 + 83974312294091439*y^12 - 17233171846493521500*y^11 - 1064212231177977606*y^10 + 15917394331044266446*y^9 + 2213346589608828033*y^8 - 9446941004466404511*y^7 - 2292874481029586463*y^6 + 3121786160210636919*y^5 + 1201035215446175088*y^4 - 355273519765875753*y^3 - 247333537481787396*y^2 - 40334300724080106*y - 1806463523301607, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - 279*x^43 + 35154*x^41 - 2656173*x^39 + 134805825*x^37 - 97712*x^36 - 4879171809*x^35 + 15188760*x^34 + 130534729785*x^33 - 1029724272*x^32 - 2640630159891*x^31 + 40401785400*x^30 + 40983205856724*x^29 - 1025408245788*x^28 - 492359066860125*x^27 + 17803202551128*x^26 + 4599619564395024*x^25 - 217725540576444*x^24 - 33445772871093027*x^23 + 1898451316158687*x^22 + 188849162457451617*x^21 - 11767696275794211*x^20 - 823332878002131822*x^19 + 50691889157596665*x^18 + 2745818611694276823*x^17 - 142361283528806580*x^16 - 6909518242574323155*x^15 + 208719160865886294*x^14 + 12865209764508264645*x^13 + 83974312294091439*x^12 - 17233171846493521500*x^11 - 1064212231177977606*x^10 + 15917394331044266446*x^9 + 2213346589608828033*x^8 - 9446941004466404511*x^7 - 2292874481029586463*x^6 + 3121786160210636919*x^5 + 1201035215446175088*x^4 - 355273519765875753*x^3 - 247333537481787396*x^2 - 40334300724080106*x - 1806463523301607);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 279*x^43 + 35154*x^41 - 2656173*x^39 + 134805825*x^37 - 97712*x^36 - 4879171809*x^35 + 15188760*x^34 + 130534729785*x^33 - 1029724272*x^32 - 2640630159891*x^31 + 40401785400*x^30 + 40983205856724*x^29 - 1025408245788*x^28 - 492359066860125*x^27 + 17803202551128*x^26 + 4599619564395024*x^25 - 217725540576444*x^24 - 33445772871093027*x^23 + 1898451316158687*x^22 + 188849162457451617*x^21 - 11767696275794211*x^20 - 823332878002131822*x^19 + 50691889157596665*x^18 + 2745818611694276823*x^17 - 142361283528806580*x^16 - 6909518242574323155*x^15 + 208719160865886294*x^14 + 12865209764508264645*x^13 + 83974312294091439*x^12 - 17233171846493521500*x^11 - 1064212231177977606*x^10 + 15917394331044266446*x^9 + 2213346589608828033*x^8 - 9446941004466404511*x^7 - 2292874481029586463*x^6 + 3121786160210636919*x^5 + 1201035215446175088*x^4 - 355273519765875753*x^3 - 247333537481787396*x^2 - 40334300724080106*x - 1806463523301607)
 

\( x^{45} - 279 x^{43} + 35154 x^{41} - 2656173 x^{39} + 134805825 x^{37} - 97712 x^{36} + \cdots - 18\!\cdots\!07 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $45$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[45, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(131\!\cdots\!889\) \(\medspace = 3^{110}\cdot 31^{42}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(361.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{22/9}31^{14/15}\approx 361.6046289801684$
Ramified primes:   \(3\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $45$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(837=3^{3}\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{837}(1,·)$, $\chi_{837}(388,·)$, $\chi_{837}(133,·)$, $\chi_{837}(769,·)$, $\chi_{837}(268,·)$, $\chi_{837}(142,·)$, $\chi_{837}(400,·)$, $\chi_{837}(280,·)$, $\chi_{837}(667,·)$, $\chi_{837}(412,·)$, $\chi_{837}(670,·)$, $\chi_{837}(160,·)$, $\chi_{837}(547,·)$, $\chi_{837}(421,·)$, $\chi_{837}(679,·)$, $\chi_{837}(391,·)$, $\chi_{837}(559,·)$, $\chi_{837}(691,·)$, $\chi_{837}(439,·)$, $\chi_{837}(826,·)$, $\chi_{837}(700,·)$, $\chi_{837}(190,·)$, $\chi_{837}(64,·)$, $\chi_{837}(193,·)$, $\chi_{837}(196,·)$, $\chi_{837}(76,·)$, $\chi_{837}(718,·)$, $\chi_{837}(721,·)$, $\chi_{837}(163,·)$, $\chi_{837}(469,·)$, $\chi_{837}(343,·)$, $\chi_{837}(472,·)$, $\chi_{837}(475,·)$, $\chi_{837}(442,·)$, $\chi_{837}(355,·)$, $\chi_{837}(490,·)$, $\chi_{837}(748,·)$, $\chi_{837}(109,·)$, $\chi_{837}(622,·)$, $\chi_{837}(751,·)$, $\chi_{837}(112,·)$, $\chi_{837}(754,·)$, $\chi_{837}(211,·)$, $\chi_{837}(121,·)$, $\chi_{837}(634,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31}a^{15}$, $\frac{1}{31}a^{16}$, $\frac{1}{31}a^{17}$, $\frac{1}{31}a^{18}$, $\frac{1}{31}a^{19}$, $\frac{1}{31}a^{20}$, $\frac{1}{31}a^{21}$, $\frac{1}{31}a^{22}$, $\frac{1}{31}a^{23}$, $\frac{1}{31}a^{24}$, $\frac{1}{31}a^{25}$, $\frac{1}{31}a^{26}$, $\frac{1}{1147}a^{27}+\frac{4}{1147}a^{26}+\frac{7}{1147}a^{25}-\frac{9}{1147}a^{24}+\frac{18}{1147}a^{23}+\frac{10}{1147}a^{22}+\frac{6}{1147}a^{21}+\frac{13}{1147}a^{20}-\frac{6}{1147}a^{19}+\frac{5}{1147}a^{18}+\frac{5}{1147}a^{17}+\frac{5}{1147}a^{16}+\frac{4}{1147}a^{15}-\frac{3}{37}a^{14}+\frac{14}{37}a^{13}+\frac{11}{37}a^{12}-\frac{13}{37}a^{11}-\frac{17}{37}a^{10}-\frac{16}{37}a^{9}+\frac{5}{37}a^{8}+\frac{1}{37}a^{7}+\frac{16}{37}a^{6}+\frac{12}{37}a^{5}-\frac{2}{37}a^{4}+\frac{6}{37}a^{3}+\frac{3}{37}a^{2}+\frac{4}{37}a$, $\frac{1}{1147}a^{28}-\frac{9}{1147}a^{26}+\frac{17}{1147}a^{24}+\frac{12}{1147}a^{23}+\frac{3}{1147}a^{22}-\frac{11}{1147}a^{21}+\frac{16}{1147}a^{20}-\frac{8}{1147}a^{19}-\frac{15}{1147}a^{18}-\frac{15}{1147}a^{17}-\frac{16}{1147}a^{16}+\frac{2}{1147}a^{15}-\frac{11}{37}a^{14}-\frac{8}{37}a^{13}+\frac{17}{37}a^{12}-\frac{2}{37}a^{11}+\frac{15}{37}a^{10}-\frac{5}{37}a^{9}+\frac{18}{37}a^{8}+\frac{12}{37}a^{7}-\frac{15}{37}a^{6}-\frac{13}{37}a^{5}+\frac{14}{37}a^{4}+\frac{16}{37}a^{3}-\frac{8}{37}a^{2}-\frac{16}{37}a$, $\frac{1}{1147}a^{29}-\frac{1}{1147}a^{26}+\frac{6}{1147}a^{25}+\frac{5}{1147}a^{24}+\frac{17}{1147}a^{23}+\frac{5}{1147}a^{22}-\frac{4}{1147}a^{21}-\frac{2}{1147}a^{20}+\frac{5}{1147}a^{19}-\frac{7}{1147}a^{18}-\frac{8}{1147}a^{17}+\frac{10}{1147}a^{16}-\frac{9}{1147}a^{15}+\frac{2}{37}a^{14}-\frac{5}{37}a^{13}-\frac{14}{37}a^{12}+\frac{9}{37}a^{11}-\frac{10}{37}a^{10}-\frac{15}{37}a^{9}-\frac{17}{37}a^{8}-\frac{6}{37}a^{7}-\frac{17}{37}a^{6}+\frac{11}{37}a^{5}-\frac{2}{37}a^{4}+\frac{9}{37}a^{3}+\frac{11}{37}a^{2}-\frac{1}{37}a$, $\frac{1}{35557}a^{30}-\frac{14}{1147}a^{26}-\frac{2}{1147}a^{25}+\frac{11}{1147}a^{24}-\frac{10}{1147}a^{23}-\frac{1}{1147}a^{22}-\frac{13}{1147}a^{21}-\frac{3}{1147}a^{20}-\frac{4}{1147}a^{19}-\frac{18}{1147}a^{18}+\frac{16}{1147}a^{17}+\frac{13}{1147}a^{16}-\frac{11}{1147}a^{15}-\frac{11}{37}a^{14}+\frac{9}{37}a^{12}+\frac{10}{37}a^{11}-\frac{7}{37}a^{10}-\frac{13}{37}a^{9}-\frac{6}{37}a^{8}+\frac{15}{37}a^{7}+\frac{14}{37}a^{6}-\frac{14}{37}a^{5}+\frac{5}{37}a^{4}-\frac{9}{37}a^{3}+\frac{12}{37}a^{2}-\frac{13}{37}a$, $\frac{1}{35557}a^{31}+\frac{17}{1147}a^{26}-\frac{2}{1147}a^{25}+\frac{12}{1147}a^{24}-\frac{8}{1147}a^{23}+\frac{16}{1147}a^{22}+\frac{7}{1147}a^{21}-\frac{7}{1147}a^{20}+\frac{9}{1147}a^{19}+\frac{12}{1147}a^{18}+\frac{9}{1147}a^{17}-\frac{15}{1147}a^{16}+\frac{11}{1147}a^{15}-\frac{5}{37}a^{14}-\frac{17}{37}a^{13}+\frac{16}{37}a^{12}-\frac{4}{37}a^{11}+\frac{8}{37}a^{10}-\frac{8}{37}a^{9}+\frac{11}{37}a^{8}-\frac{9}{37}a^{7}-\frac{12}{37}a^{6}-\frac{12}{37}a^{5}-\frac{15}{37}a^{3}-\frac{8}{37}a^{2}-\frac{18}{37}a$, $\frac{1}{35557}a^{32}+\frac{4}{1147}a^{26}+\frac{4}{1147}a^{25}-\frac{3}{1147}a^{24}+\frac{6}{1147}a^{23}-\frac{15}{1147}a^{22}+\frac{2}{1147}a^{21}+\frac{10}{1147}a^{20}+\frac{3}{1147}a^{19}-\frac{2}{1147}a^{18}+\frac{11}{1147}a^{17}-\frac{1}{1147}a^{15}-\frac{3}{37}a^{14}-\frac{6}{37}a^{12}+\frac{7}{37}a^{11}-\frac{15}{37}a^{10}-\frac{13}{37}a^{9}+\frac{17}{37}a^{8}+\frac{8}{37}a^{7}+\frac{12}{37}a^{6}+\frac{18}{37}a^{5}-\frac{18}{37}a^{4}+\frac{1}{37}a^{3}+\frac{5}{37}a^{2}+\frac{6}{37}a$, $\frac{1}{35557}a^{33}-\frac{12}{1147}a^{26}+\frac{6}{1147}a^{25}+\frac{5}{1147}a^{24}-\frac{13}{1147}a^{23}-\frac{1}{1147}a^{22}-\frac{14}{1147}a^{21}-\frac{12}{1147}a^{20}-\frac{15}{1147}a^{19}-\frac{9}{1147}a^{18}+\frac{17}{1147}a^{17}+\frac{16}{1147}a^{16}+\frac{2}{1147}a^{15}+\frac{12}{37}a^{14}+\frac{12}{37}a^{13}+\frac{18}{37}a^{10}+\frac{7}{37}a^{9}-\frac{12}{37}a^{8}+\frac{8}{37}a^{7}-\frac{9}{37}a^{6}+\frac{8}{37}a^{5}+\frac{9}{37}a^{4}+\frac{18}{37}a^{3}-\frac{6}{37}a^{2}-\frac{16}{37}a$, $\frac{1}{35557}a^{34}+\frac{17}{1147}a^{26}+\frac{15}{1147}a^{25}-\frac{10}{1147}a^{24}-\frac{7}{1147}a^{23}-\frac{5}{1147}a^{22}-\frac{14}{1147}a^{21}-\frac{7}{1147}a^{20}-\frac{7}{1147}a^{19}+\frac{3}{1147}a^{18}+\frac{2}{1147}a^{17}-\frac{12}{1147}a^{16}+\frac{13}{1147}a^{15}+\frac{13}{37}a^{14}-\frac{17}{37}a^{13}-\frac{16}{37}a^{12}+\frac{10}{37}a^{11}-\frac{12}{37}a^{10}+\frac{18}{37}a^{9}-\frac{6}{37}a^{8}+\frac{3}{37}a^{7}+\frac{15}{37}a^{6}+\frac{5}{37}a^{5}-\frac{6}{37}a^{4}-\frac{8}{37}a^{3}-\frac{17}{37}a^{2}+\frac{11}{37}a$, $\frac{1}{35557}a^{35}-\frac{16}{1147}a^{26}-\frac{18}{1147}a^{25}-\frac{2}{1147}a^{24}-\frac{15}{1147}a^{23}+\frac{1}{1147}a^{22}+\frac{2}{1147}a^{21}-\frac{6}{1147}a^{20}-\frac{6}{1147}a^{19}-\frac{9}{1147}a^{18}+\frac{14}{1147}a^{17}+\frac{2}{1147}a^{16}+\frac{2}{1147}a^{15}-\frac{3}{37}a^{14}+\frac{5}{37}a^{13}+\frac{8}{37}a^{12}-\frac{13}{37}a^{11}+\frac{11}{37}a^{10}+\frac{7}{37}a^{9}-\frac{8}{37}a^{8}-\frac{2}{37}a^{7}-\frac{8}{37}a^{6}+\frac{12}{37}a^{5}-\frac{11}{37}a^{4}-\frac{8}{37}a^{3}-\frac{3}{37}a^{2}+\frac{6}{37}a$, $\frac{1}{177785}a^{36}-\frac{1}{177785}a^{34}-\frac{2}{177785}a^{32}-\frac{1}{177785}a^{30}-\frac{1}{5735}a^{28}+\frac{2}{5735}a^{27}+\frac{3}{1147}a^{26}-\frac{8}{5735}a^{25}-\frac{4}{5735}a^{24}-\frac{3}{1147}a^{23}-\frac{44}{5735}a^{22}+\frac{5}{1147}a^{21}-\frac{57}{5735}a^{20}-\frac{6}{1147}a^{19}+\frac{64}{5735}a^{18}+\frac{6}{1147}a^{17}-\frac{4}{5735}a^{16}-\frac{12}{1147}a^{15}+\frac{8}{37}a^{14}+\frac{26}{185}a^{13}+\frac{2}{185}a^{12}+\frac{4}{185}a^{11}+\frac{68}{185}a^{10}-\frac{17}{37}a^{9}-\frac{63}{185}a^{8}-\frac{73}{185}a^{7}+\frac{77}{185}a^{6}+\frac{6}{185}a^{5}+\frac{16}{185}a^{4}-\frac{7}{185}a^{3}+\frac{26}{185}a^{2}-\frac{33}{185}a-\frac{1}{5}$, $\frac{1}{177785}a^{37}-\frac{1}{177785}a^{35}-\frac{2}{177785}a^{33}-\frac{1}{177785}a^{31}-\frac{1}{5735}a^{29}+\frac{2}{5735}a^{28}-\frac{68}{5735}a^{26}+\frac{76}{5735}a^{25}-\frac{13}{1147}a^{24}+\frac{56}{5735}a^{23}+\frac{12}{1147}a^{22}+\frac{38}{5735}a^{21}-\frac{8}{1147}a^{20}-\frac{1}{185}a^{19}-\frac{9}{1147}a^{18}-\frac{79}{5735}a^{17}+\frac{10}{1147}a^{16}+\frac{14}{1147}a^{15}+\frac{71}{185}a^{14}-\frac{23}{185}a^{13}+\frac{24}{185}a^{12}+\frac{78}{185}a^{11}-\frac{3}{37}a^{10}-\frac{8}{185}a^{9}+\frac{1}{5}a^{8}+\frac{62}{185}a^{7}-\frac{49}{185}a^{6}+\frac{21}{185}a^{5}+\frac{23}{185}a^{4}-\frac{64}{185}a^{3}-\frac{78}{185}a^{2}+\frac{88}{185}a$, $\frac{1}{177785}a^{38}+\frac{2}{177785}a^{34}+\frac{2}{177785}a^{32}-\frac{2}{177785}a^{30}+\frac{2}{5735}a^{29}-\frac{1}{5735}a^{28}-\frac{1}{5735}a^{27}+\frac{36}{5735}a^{26}+\frac{47}{5735}a^{25}-\frac{83}{5735}a^{24}-\frac{3}{1147}a^{23}-\frac{41}{5735}a^{22}-\frac{15}{1147}a^{21}-\frac{58}{5735}a^{20}-\frac{10}{1147}a^{19}-\frac{8}{1147}a^{18}+\frac{5}{1147}a^{17}-\frac{19}{5735}a^{16}-\frac{89}{5735}a^{15}-\frac{88}{185}a^{14}-\frac{10}{37}a^{13}+\frac{6}{37}a^{12}+\frac{84}{185}a^{11}+\frac{18}{37}a^{10}+\frac{27}{185}a^{9}+\frac{14}{185}a^{8}+\frac{78}{185}a^{7}+\frac{28}{185}a^{6}-\frac{51}{185}a^{5}+\frac{1}{5}a^{4}+\frac{54}{185}a^{2}-\frac{78}{185}a-\frac{1}{5}$, $\frac{1}{177785}a^{39}+\frac{2}{177785}a^{35}+\frac{2}{177785}a^{33}-\frac{2}{177785}a^{31}+\frac{2}{177785}a^{30}-\frac{1}{5735}a^{29}-\frac{1}{5735}a^{28}+\frac{1}{5735}a^{27}+\frac{7}{5735}a^{26}-\frac{23}{5735}a^{25}+\frac{2}{1147}a^{24}-\frac{71}{5735}a^{23}+\frac{1}{1147}a^{22}-\frac{43}{5735}a^{21}+\frac{9}{1147}a^{20}+\frac{8}{1147}a^{19}+\frac{1}{1147}a^{18}-\frac{44}{5735}a^{17}+\frac{66}{5735}a^{16}+\frac{12}{5735}a^{15}-\frac{5}{37}a^{14}-\frac{18}{37}a^{13}+\frac{84}{185}a^{12}-\frac{11}{37}a^{11}-\frac{68}{185}a^{10}+\frac{59}{185}a^{9}+\frac{78}{185}a^{8}+\frac{18}{185}a^{7}+\frac{29}{185}a^{6}+\frac{87}{185}a^{5}-\frac{9}{37}a^{4}+\frac{14}{185}a^{3}+\frac{22}{185}a^{2}+\frac{48}{185}a$, $\frac{1}{6578045}a^{40}-\frac{13}{6578045}a^{39}+\frac{7}{6578045}a^{38}+\frac{16}{6578045}a^{37}-\frac{9}{6578045}a^{36}+\frac{63}{6578045}a^{35}-\frac{83}{6578045}a^{34}+\frac{17}{6578045}a^{33}+\frac{84}{6578045}a^{32}-\frac{53}{6578045}a^{31}+\frac{7}{1315609}a^{30}-\frac{10}{42439}a^{29}-\frac{3}{42439}a^{28}-\frac{15}{42439}a^{27}-\frac{316}{42439}a^{26}-\frac{83}{6845}a^{25}+\frac{51}{5735}a^{24}-\frac{2916}{212195}a^{23}-\frac{1521}{212195}a^{22}+\frac{2827}{212195}a^{21}-\frac{3234}{212195}a^{20}+\frac{1329}{212195}a^{19}+\frac{2242}{212195}a^{18}-\frac{1806}{212195}a^{17}-\frac{582}{42439}a^{16}+\frac{6}{6845}a^{15}+\frac{270}{1369}a^{14}+\frac{131}{1369}a^{13}+\frac{574}{1369}a^{12}+\frac{349}{6845}a^{11}-\frac{295}{1369}a^{10}-\frac{1023}{6845}a^{9}-\frac{2218}{6845}a^{8}+\frac{1741}{6845}a^{7}-\frac{17}{1369}a^{6}-\frac{3413}{6845}a^{5}+\frac{167}{1369}a^{4}-\frac{2292}{6845}a^{3}-\frac{119}{6845}a^{2}-\frac{2409}{6845}a-\frac{41}{185}$, $\frac{1}{13\!\cdots\!85}a^{41}-\frac{1230775312}{13\!\cdots\!85}a^{40}-\frac{34816014263}{27\!\cdots\!37}a^{39}-\frac{107580137303}{13\!\cdots\!85}a^{38}-\frac{242409401819}{13\!\cdots\!85}a^{37}+\frac{198361452252}{13\!\cdots\!85}a^{36}-\frac{1320794785182}{13\!\cdots\!85}a^{35}-\frac{1671691896446}{13\!\cdots\!85}a^{34}-\frac{71677086678}{27\!\cdots\!37}a^{33}-\frac{161919906387}{13\!\cdots\!85}a^{32}-\frac{1385642448179}{13\!\cdots\!85}a^{31}+\frac{561297954321}{13\!\cdots\!85}a^{30}+\frac{118422329023}{44\!\cdots\!35}a^{29}-\frac{286770882896}{896753902570727}a^{28}-\frac{1595507756192}{44\!\cdots\!35}a^{27}-\frac{19692159009509}{44\!\cdots\!35}a^{26}-\frac{107556220536}{24772207253335}a^{25}-\frac{45565044474123}{44\!\cdots\!35}a^{24}+\frac{416778824103}{121182959806855}a^{23}+\frac{11017637575436}{896753902570727}a^{22}+\frac{4292966060992}{44\!\cdots\!35}a^{21}-\frac{52500823995628}{44\!\cdots\!35}a^{20}-\frac{40533366707448}{44\!\cdots\!35}a^{19}+\frac{24058607055338}{44\!\cdots\!35}a^{18}+\frac{37091344076949}{44\!\cdots\!35}a^{17}-\frac{26509138846941}{44\!\cdots\!35}a^{16}-\frac{52840000318}{24772207253335}a^{15}+\frac{27619287363622}{144637726221085}a^{14}-\frac{42615046641079}{144637726221085}a^{13}-\frac{9419928297961}{28927545244217}a^{12}-\frac{4721133088911}{144637726221085}a^{11}+\frac{163703097014}{3909127735705}a^{10}-\frac{44135398049871}{144637726221085}a^{9}+\frac{15707239040461}{144637726221085}a^{8}+\frac{6324018564621}{28927545244217}a^{7}-\frac{421136956717}{144637726221085}a^{6}+\frac{151420495306}{3909127735705}a^{5}-\frac{66560625860169}{144637726221085}a^{4}-\frac{27501089560479}{144637726221085}a^{3}+\frac{37396192642881}{144637726221085}a^{2}-\frac{46292912861957}{144637726221085}a+\frac{1538268976477}{3909127735705}$, $\frac{1}{13\!\cdots\!85}a^{42}+\frac{775431069}{13\!\cdots\!85}a^{40}-\frac{1799042619}{37\!\cdots\!05}a^{39}+\frac{186226679139}{13\!\cdots\!85}a^{38}+\frac{100583084119}{13\!\cdots\!85}a^{37}-\frac{13865267063}{13\!\cdots\!85}a^{36}-\frac{59428856166}{27\!\cdots\!37}a^{35}+\frac{560493928413}{13\!\cdots\!85}a^{34}+\frac{1346581592268}{13\!\cdots\!85}a^{33}+\frac{950426196156}{13\!\cdots\!85}a^{32}-\frac{5035006678}{37\!\cdots\!05}a^{31}-\frac{85760287295}{27\!\cdots\!37}a^{30}+\frac{338880168346}{44\!\cdots\!35}a^{29}-\frac{53217223607}{144637726221085}a^{28}-\frac{19553314708}{144637726221085}a^{27}+\frac{56745774396256}{44\!\cdots\!35}a^{26}+\frac{54648846423006}{44\!\cdots\!35}a^{25}+\frac{69810833628004}{44\!\cdots\!35}a^{24}+\frac{10307876934532}{44\!\cdots\!35}a^{23}+\frac{5200319336343}{44\!\cdots\!35}a^{22}-\frac{39027670423979}{44\!\cdots\!35}a^{21}-\frac{71633836278144}{44\!\cdots\!35}a^{20}-\frac{29207802844693}{44\!\cdots\!35}a^{19}+\frac{36984477566129}{44\!\cdots\!35}a^{18}+\frac{9526626123784}{896753902570727}a^{17}-\frac{55993633251091}{44\!\cdots\!35}a^{16}+\frac{1934972111836}{896753902570727}a^{15}+\frac{48923645624823}{144637726221085}a^{14}-\frac{63555187589027}{144637726221085}a^{13}+\frac{15880538264462}{144637726221085}a^{12}-\frac{54711348422666}{144637726221085}a^{11}+\frac{4600433465674}{144637726221085}a^{10}+\frac{50219197762831}{144637726221085}a^{9}-\frac{362356276589}{28927545244217}a^{8}-\frac{10952372935154}{28927545244217}a^{7}-\frac{40828637437641}{144637726221085}a^{6}-\frac{5389235830118}{28927545244217}a^{5}-\frac{28122795124038}{144637726221085}a^{4}+\frac{21395982628111}{144637726221085}a^{3}+\frac{32974266613849}{144637726221085}a^{2}+\frac{26738835866371}{144637726221085}a+\frac{1137205319916}{3909127735705}$, $\frac{1}{99\!\cdots\!15}a^{43}+\frac{45}{19\!\cdots\!03}a^{42}-\frac{28}{19\!\cdots\!03}a^{41}+\frac{4271314659917}{99\!\cdots\!15}a^{40}-\frac{88766725515574}{99\!\cdots\!15}a^{39}+\frac{1985258839343}{32\!\cdots\!65}a^{38}+\frac{256690586318294}{99\!\cdots\!15}a^{37}-\frac{30811871437707}{19\!\cdots\!03}a^{36}+\frac{427351301240769}{99\!\cdots\!15}a^{35}-\frac{12\!\cdots\!24}{99\!\cdots\!15}a^{34}+\frac{890135440327383}{99\!\cdots\!15}a^{33}+\frac{500182849683144}{99\!\cdots\!15}a^{32}-\frac{208133556765032}{19\!\cdots\!03}a^{31}-\frac{332763834004964}{99\!\cdots\!15}a^{30}+\frac{237658999435711}{64\!\cdots\!13}a^{29}+\frac{12\!\cdots\!48}{32\!\cdots\!65}a^{28}+\frac{12549357912668}{87\!\cdots\!45}a^{27}-\frac{31\!\cdots\!21}{32\!\cdots\!65}a^{26}-\frac{97\!\cdots\!73}{64\!\cdots\!13}a^{25}+\frac{41\!\cdots\!12}{64\!\cdots\!13}a^{24}+\frac{26\!\cdots\!88}{32\!\cdots\!65}a^{23}-\frac{22\!\cdots\!63}{32\!\cdots\!65}a^{22}-\frac{56\!\cdots\!81}{64\!\cdots\!13}a^{21}+\frac{17\!\cdots\!19}{64\!\cdots\!13}a^{20}-\frac{86\!\cdots\!02}{64\!\cdots\!13}a^{19}-\frac{36\!\cdots\!89}{32\!\cdots\!65}a^{18}+\frac{23\!\cdots\!53}{32\!\cdots\!65}a^{17}+\frac{16\!\cdots\!01}{32\!\cdots\!65}a^{16}+\frac{33\!\cdots\!36}{32\!\cdots\!65}a^{15}+\frac{671053025440255}{20\!\cdots\!23}a^{14}+\frac{43\!\cdots\!67}{10\!\cdots\!15}a^{13}-\frac{44\!\cdots\!21}{10\!\cdots\!15}a^{12}+\frac{30\!\cdots\!79}{10\!\cdots\!15}a^{11}-\frac{51\!\cdots\!87}{10\!\cdots\!15}a^{10}+\frac{35\!\cdots\!79}{10\!\cdots\!15}a^{9}+\frac{50\!\cdots\!61}{10\!\cdots\!15}a^{8}-\frac{88\!\cdots\!31}{10\!\cdots\!15}a^{7}+\frac{36\!\cdots\!12}{20\!\cdots\!23}a^{6}-\frac{13\!\cdots\!59}{10\!\cdots\!15}a^{5}+\frac{44\!\cdots\!21}{10\!\cdots\!15}a^{4}+\frac{12\!\cdots\!60}{20\!\cdots\!23}a^{3}+\frac{46\!\cdots\!21}{10\!\cdots\!15}a^{2}-\frac{982456255863069}{10\!\cdots\!15}a-\frac{10\!\cdots\!99}{28\!\cdots\!95}$, $\frac{1}{20\!\cdots\!55}a^{44}+\frac{29\!\cdots\!35}{41\!\cdots\!71}a^{43}-\frac{38\!\cdots\!27}{20\!\cdots\!55}a^{42}-\frac{51\!\cdots\!37}{20\!\cdots\!55}a^{41}-\frac{31\!\cdots\!42}{67\!\cdots\!05}a^{40}-\frac{41\!\cdots\!54}{41\!\cdots\!71}a^{39}-\frac{95\!\cdots\!30}{41\!\cdots\!71}a^{38}-\frac{39\!\cdots\!01}{20\!\cdots\!55}a^{37}-\frac{31\!\cdots\!93}{20\!\cdots\!55}a^{36}-\frac{30\!\cdots\!70}{41\!\cdots\!71}a^{35}+\frac{11\!\cdots\!78}{20\!\cdots\!55}a^{34}+\frac{26\!\cdots\!48}{20\!\cdots\!55}a^{33}+\frac{86\!\cdots\!99}{20\!\cdots\!55}a^{32}+\frac{30\!\cdots\!85}{41\!\cdots\!71}a^{31}-\frac{31\!\cdots\!94}{20\!\cdots\!55}a^{30}-\frac{67\!\cdots\!01}{67\!\cdots\!05}a^{29}+\frac{46\!\cdots\!30}{13\!\cdots\!41}a^{28}+\frac{23\!\cdots\!03}{67\!\cdots\!05}a^{27}-\frac{88\!\cdots\!21}{67\!\cdots\!05}a^{26}+\frac{10\!\cdots\!46}{67\!\cdots\!05}a^{25}-\frac{32\!\cdots\!99}{13\!\cdots\!41}a^{24}+\frac{91\!\cdots\!14}{67\!\cdots\!05}a^{23}-\frac{78\!\cdots\!23}{67\!\cdots\!05}a^{22}-\frac{36\!\cdots\!97}{13\!\cdots\!41}a^{21}+\frac{25\!\cdots\!47}{67\!\cdots\!05}a^{20}+\frac{85\!\cdots\!43}{67\!\cdots\!05}a^{19}+\frac{63\!\cdots\!59}{67\!\cdots\!05}a^{18}-\frac{17\!\cdots\!56}{67\!\cdots\!05}a^{17}-\frac{49\!\cdots\!59}{13\!\cdots\!41}a^{16}+\frac{33\!\cdots\!96}{67\!\cdots\!05}a^{15}+\frac{53\!\cdots\!48}{21\!\cdots\!55}a^{14}-\frac{14\!\cdots\!05}{43\!\cdots\!11}a^{13}-\frac{34\!\cdots\!72}{43\!\cdots\!11}a^{12}+\frac{92\!\cdots\!53}{21\!\cdots\!55}a^{11}-\frac{84\!\cdots\!98}{21\!\cdots\!55}a^{10}+\frac{79\!\cdots\!99}{21\!\cdots\!55}a^{9}+\frac{42\!\cdots\!96}{21\!\cdots\!55}a^{8}-\frac{23\!\cdots\!09}{21\!\cdots\!55}a^{7}-\frac{98\!\cdots\!97}{21\!\cdots\!55}a^{6}+\frac{16\!\cdots\!39}{43\!\cdots\!11}a^{5}-\frac{89\!\cdots\!97}{21\!\cdots\!55}a^{4}+\frac{10\!\cdots\!97}{21\!\cdots\!55}a^{3}+\frac{46\!\cdots\!58}{21\!\cdots\!55}a^{2}-\frac{37\!\cdots\!50}{43\!\cdots\!11}a+\frac{98\!\cdots\!12}{35\!\cdots\!15}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $37$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $44$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^45 - 279*x^43 + 35154*x^41 - 2656173*x^39 + 134805825*x^37 - 97712*x^36 - 4879171809*x^35 + 15188760*x^34 + 130534729785*x^33 - 1029724272*x^32 - 2640630159891*x^31 + 40401785400*x^30 + 40983205856724*x^29 - 1025408245788*x^28 - 492359066860125*x^27 + 17803202551128*x^26 + 4599619564395024*x^25 - 217725540576444*x^24 - 33445772871093027*x^23 + 1898451316158687*x^22 + 188849162457451617*x^21 - 11767696275794211*x^20 - 823332878002131822*x^19 + 50691889157596665*x^18 + 2745818611694276823*x^17 - 142361283528806580*x^16 - 6909518242574323155*x^15 + 208719160865886294*x^14 + 12865209764508264645*x^13 + 83974312294091439*x^12 - 17233171846493521500*x^11 - 1064212231177977606*x^10 + 15917394331044266446*x^9 + 2213346589608828033*x^8 - 9446941004466404511*x^7 - 2292874481029586463*x^6 + 3121786160210636919*x^5 + 1201035215446175088*x^4 - 355273519765875753*x^3 - 247333537481787396*x^2 - 40334300724080106*x - 1806463523301607)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^45 - 279*x^43 + 35154*x^41 - 2656173*x^39 + 134805825*x^37 - 97712*x^36 - 4879171809*x^35 + 15188760*x^34 + 130534729785*x^33 - 1029724272*x^32 - 2640630159891*x^31 + 40401785400*x^30 + 40983205856724*x^29 - 1025408245788*x^28 - 492359066860125*x^27 + 17803202551128*x^26 + 4599619564395024*x^25 - 217725540576444*x^24 - 33445772871093027*x^23 + 1898451316158687*x^22 + 188849162457451617*x^21 - 11767696275794211*x^20 - 823332878002131822*x^19 + 50691889157596665*x^18 + 2745818611694276823*x^17 - 142361283528806580*x^16 - 6909518242574323155*x^15 + 208719160865886294*x^14 + 12865209764508264645*x^13 + 83974312294091439*x^12 - 17233171846493521500*x^11 - 1064212231177977606*x^10 + 15917394331044266446*x^9 + 2213346589608828033*x^8 - 9446941004466404511*x^7 - 2292874481029586463*x^6 + 3121786160210636919*x^5 + 1201035215446175088*x^4 - 355273519765875753*x^3 - 247333537481787396*x^2 - 40334300724080106*x - 1806463523301607, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^45 - 279*x^43 + 35154*x^41 - 2656173*x^39 + 134805825*x^37 - 97712*x^36 - 4879171809*x^35 + 15188760*x^34 + 130534729785*x^33 - 1029724272*x^32 - 2640630159891*x^31 + 40401785400*x^30 + 40983205856724*x^29 - 1025408245788*x^28 - 492359066860125*x^27 + 17803202551128*x^26 + 4599619564395024*x^25 - 217725540576444*x^24 - 33445772871093027*x^23 + 1898451316158687*x^22 + 188849162457451617*x^21 - 11767696275794211*x^20 - 823332878002131822*x^19 + 50691889157596665*x^18 + 2745818611694276823*x^17 - 142361283528806580*x^16 - 6909518242574323155*x^15 + 208719160865886294*x^14 + 12865209764508264645*x^13 + 83974312294091439*x^12 - 17233171846493521500*x^11 - 1064212231177977606*x^10 + 15917394331044266446*x^9 + 2213346589608828033*x^8 - 9446941004466404511*x^7 - 2292874481029586463*x^6 + 3121786160210636919*x^5 + 1201035215446175088*x^4 - 355273519765875753*x^3 - 247333537481787396*x^2 - 40334300724080106*x - 1806463523301607);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 279*x^43 + 35154*x^41 - 2656173*x^39 + 134805825*x^37 - 97712*x^36 - 4879171809*x^35 + 15188760*x^34 + 130534729785*x^33 - 1029724272*x^32 - 2640630159891*x^31 + 40401785400*x^30 + 40983205856724*x^29 - 1025408245788*x^28 - 492359066860125*x^27 + 17803202551128*x^26 + 4599619564395024*x^25 - 217725540576444*x^24 - 33445772871093027*x^23 + 1898451316158687*x^22 + 188849162457451617*x^21 - 11767696275794211*x^20 - 823332878002131822*x^19 + 50691889157596665*x^18 + 2745818611694276823*x^17 - 142361283528806580*x^16 - 6909518242574323155*x^15 + 208719160865886294*x^14 + 12865209764508264645*x^13 + 83974312294091439*x^12 - 17233171846493521500*x^11 - 1064212231177977606*x^10 + 15917394331044266446*x^9 + 2213346589608828033*x^8 - 9446941004466404511*x^7 - 2292874481029586463*x^6 + 3121786160210636919*x^5 + 1201035215446175088*x^4 - 355273519765875753*x^3 - 247333537481787396*x^2 - 40334300724080106*x - 1806463523301607);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{45}$ (as 45T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 45
The 45 conjugacy class representatives for $C_{45}$
Character table for $C_{45}$

Intermediate fields

\(\Q(\zeta_{9})^+\), 5.5.923521.1, 9.9.27850805916667920729.1, 15.15.2746410307762150989067078161.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $45$ R ${\href{/padicField/5.9.0.1}{9} }^{5}$ $45$ $45$ $45$ ${\href{/padicField/17.5.0.1}{5} }^{9}$ $15^{3}$ $45$ $45$ R ${\href{/padicField/37.1.0.1}{1} }^{45}$ $45$ $45$ $45$ $15^{3}$ $45$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $45$$9$$5$$110$
\(31\) Copy content Toggle raw display Deg $45$$15$$3$$42$