# SageMath code for working with number field 45.45.112369590570788381690576561372238600351878236661366984431016423673684387952713968402481343001103760716137281.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^45 - x^44 - 132*x^43 + 301*x^42 + 7581*x^41 - 27065*x^40 - 236809*x^39 + 1229173*x^38 + 3960874*x^37 - 33065607*x^36 - 18797995*x^35 + 555716542*x^34 - 619527603*x^33 - 5732299123*x^32 + 15235581842*x^31 + 30609318626*x^30 - 168897578817*x^29 + 17112929652*x^28 + 1054352970448*x^27 - 1501837759883*x^26 - 3320354588485*x^25 + 10782132568732*x^24 - 107051646226*x^23 - 36936809485370*x^22 + 41830258905956*x^21 + 53083505529011*x^20 - 152445251342987*x^19 + 42842896041923*x^18 + 229594603485553*x^17 - 272222797945867*x^16 - 70739760279828*x^15 + 364126674087072*x^14 - 209159107972130*x^13 - 142016333800362*x^12 + 231101895832035*x^11 - 63870399263881*x^10 - 62082302112786*x^9 + 49149720219336*x^8 - 3670701881262*x^7 - 8040338248733*x^6 + 2565873490427*x^5 + 306896523050*x^4 - 230447557112*x^3 + 11171763392*x^2 + 5932497375*x - 637239997) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^45 - x^44 - 132*x^43 + 301*x^42 + 7581*x^41 - 27065*x^40 - 236809*x^39 + 1229173*x^38 + 3960874*x^37 - 33065607*x^36 - 18797995*x^35 + 555716542*x^34 - 619527603*x^33 - 5732299123*x^32 + 15235581842*x^31 + 30609318626*x^30 - 168897578817*x^29 + 17112929652*x^28 + 1054352970448*x^27 - 1501837759883*x^26 - 3320354588485*x^25 + 10782132568732*x^24 - 107051646226*x^23 - 36936809485370*x^22 + 41830258905956*x^21 + 53083505529011*x^20 - 152445251342987*x^19 + 42842896041923*x^18 + 229594603485553*x^17 - 272222797945867*x^16 - 70739760279828*x^15 + 364126674087072*x^14 - 209159107972130*x^13 - 142016333800362*x^12 + 231101895832035*x^11 - 63870399263881*x^10 - 62082302112786*x^9 + 49149720219336*x^8 - 3670701881262*x^7 - 8040338248733*x^6 + 2565873490427*x^5 + 306896523050*x^4 - 230447557112*x^3 + 11171763392*x^2 + 5932497375*x - 637239997) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]