magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -176, 0, 7700, 0, -133210, 0, 1216380, 0, -6781005, 0, 25178895, 0, -65934180, 0, 126676230, 0, -183670815, 0, 205096155, 0, -178931535, 0, 123140835, 0, -67217827, 0, 29148711, 0, -10016751, 0, 2708289, 0, -568616, 0, 90724, 0, -10622, 0, 860, 0, -43, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^44 - 43*x^42 + 860*x^40 - 10622*x^38 + 90724*x^36 - 568616*x^34 + 2708289*x^32 - 10016751*x^30 + 29148711*x^28 - 67217827*x^26 + 123140835*x^24 - 178931535*x^22 + 205096155*x^20 - 183670815*x^18 + 126676230*x^16 - 65934180*x^14 + 25178895*x^12 - 6781005*x^10 + 1216380*x^8 - 133210*x^6 + 7700*x^4 - 176*x^2 + 1)
gp: K = bnfinit(x^44 - 43*x^42 + 860*x^40 - 10622*x^38 + 90724*x^36 - 568616*x^34 + 2708289*x^32 - 10016751*x^30 + 29148711*x^28 - 67217827*x^26 + 123140835*x^24 - 178931535*x^22 + 205096155*x^20 - 183670815*x^18 + 126676230*x^16 - 65934180*x^14 + 25178895*x^12 - 6781005*x^10 + 1216380*x^8 - 133210*x^6 + 7700*x^4 - 176*x^2 + 1, 1)
\( x^{44} - 43 x^{42} + 860 x^{40} - 10622 x^{38} + 90724 x^{36} - 568616 x^{34} + 2708289 x^{32} - 10016751 x^{30} + 29148711 x^{28} - 67217827 x^{26} + 123140835 x^{24} - 178931535 x^{22} + 205096155 x^{20} - 183670815 x^{18} + 126676230 x^{16} - 65934180 x^{14} + 25178895 x^{12} - 6781005 x^{10} + 1216380 x^{8} - 133210 x^{6} + 7700 x^{4} - 176 x^{2} + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $44$ |
|
| Signature: | | $[44, 0]$ |
|
| Discriminant: | | \(860115008245742907292219227824365111518443501386754869093198564719785672888549376=2^{44}\cdot 3^{22}\cdot 23^{42}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $69.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(276=2^{2}\cdot 3\cdot 23\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{276}(1,·)$, $\chi_{276}(131,·)$, $\chi_{276}(5,·)$, $\chi_{276}(7,·)$, $\chi_{276}(265,·)$, $\chi_{276}(13,·)$, $\chi_{276}(17,·)$, $\chi_{276}(19,·)$, $\chi_{276}(149,·)$, $\chi_{276}(25,·)$, $\chi_{276}(47,·)$, $\chi_{276}(133,·)$, $\chi_{276}(35,·)$, $\chi_{276}(65,·)$, $\chi_{276}(167,·)$, $\chi_{276}(169,·)$, $\chi_{276}(43,·)$, $\chi_{276}(175,·)$, $\chi_{276}(49,·)$, $\chi_{276}(179,·)$, $\chi_{276}(53,·)$, $\chi_{276}(137,·)$, $\chi_{276}(59,·)$, $\chi_{276}(193,·)$, $\chi_{276}(67,·)$, $\chi_{276}(71,·)$, $\chi_{276}(73,·)$, $\chi_{276}(119,·)$, $\chi_{276}(79,·)$, $\chi_{276}(85,·)$, $\chi_{276}(215,·)$, $\chi_{276}(89,·)$, $\chi_{276}(91,·)$, $\chi_{276}(221,·)$, $\chi_{276}(199,·)$, $\chi_{276}(95,·)$, $\chi_{276}(103,·)$, $\chi_{276}(235,·)$, $\chi_{276}(239,·)$, $\chi_{276}(113,·)$, $\chi_{276}(245,·)$, $\chi_{276}(247,·)$, $\chi_{276}(121,·)$, $\chi_{276}(125,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$
Trivial group, which has order $1$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $43$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 396826934994876900000000000 \)
(assuming GRH)
|
|
$C_2\times C_{22}$ (as 44T2):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
R |
$22^{2}$ |
$22^{2}$ |
${\href{/LocalNumberField/11.11.0.1}{11} }^{4}$ |
${\href{/LocalNumberField/13.11.0.1}{11} }^{4}$ |
$22^{2}$ |
$22^{2}$ |
R |
$22^{2}$ |
$22^{2}$ |
$22^{2}$ |
$22^{2}$ |
$22^{2}$ |
${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ |
$22^{2}$ |
$22^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])