Normalized defining polynomial
\( x^{44} - 69 x^{42} + 2139 x^{40} - 39468 x^{38} + 484495 x^{36} - 4193682 x^{34} + 26499197 x^{32} - 125010267 x^{30} + 447055439 x^{28} - 1224773115 x^{26} + 2588447416 x^{24} - 4235761650 x^{22} + 5369828745 x^{20} - 5258413410 x^{18} + 3950328660 x^{16} - 2250421545 x^{14} + 955257620 x^{12} - 294507525 x^{10} + 63543480 x^{8} - 9077640 x^{6} + 785565 x^{4} - 34914 x^{2} + 529 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{23} a^{22}$, $\frac{1}{23} a^{23}$, $\frac{1}{23} a^{24}$, $\frac{1}{23} a^{25}$, $\frac{1}{23} a^{26}$, $\frac{1}{23} a^{27}$, $\frac{1}{23} a^{28}$, $\frac{1}{23} a^{29}$, $\frac{1}{23} a^{30}$, $\frac{1}{23} a^{31}$, $\frac{1}{23} a^{32}$, $\frac{1}{23} a^{33}$, $\frac{1}{23} a^{34}$, $\frac{1}{23} a^{35}$, $\frac{1}{23} a^{36}$, $\frac{1}{23} a^{37}$, $\frac{1}{23} a^{38}$, $\frac{1}{23} a^{39}$, $\frac{1}{23} a^{40}$, $\frac{1}{23} a^{41}$, $\frac{1}{119065662966459206469142305042008031773} a^{42} + \frac{2366306122525813891090010977660989726}{119065662966459206469142305042008031773} a^{40} + \frac{659241420377185617287538190701293598}{119065662966459206469142305042008031773} a^{38} - \frac{823722461331763048903311289996699497}{119065662966459206469142305042008031773} a^{36} - \frac{74633285535024869919254267388543196}{5176767955063443759527926306174262251} a^{34} - \frac{1102018233721431688549009340392226645}{119065662966459206469142305042008031773} a^{32} + \frac{692472151679804406039322617839847398}{119065662966459206469142305042008031773} a^{30} - \frac{854781014505855961290814810941202388}{119065662966459206469142305042008031773} a^{28} - \frac{699804487662845403224171832518458002}{119065662966459206469142305042008031773} a^{26} - \frac{1036494116831807342490339593844649112}{119065662966459206469142305042008031773} a^{24} - \frac{1395801635517096940389950280632949041}{119065662966459206469142305042008031773} a^{22} + \frac{1698051835025592547271696061539685296}{5176767955063443759527926306174262251} a^{20} - \frac{1318566500120216940814401688536628461}{5176767955063443759527926306174262251} a^{18} - \frac{199714160702359264876728874507936990}{5176767955063443759527926306174262251} a^{16} - \frac{1434525147276707909459488885610419622}{5176767955063443759527926306174262251} a^{14} - \frac{948912050754673992699344456400037232}{5176767955063443759527926306174262251} a^{12} - \frac{28562325843893428536399586216427882}{5176767955063443759527926306174262251} a^{10} + \frac{2536880362138947577469682819431071366}{5176767955063443759527926306174262251} a^{8} - \frac{2123925454680881557819778079015500742}{5176767955063443759527926306174262251} a^{6} + \frac{605187513823834534390531883007438827}{5176767955063443759527926306174262251} a^{4} + \frac{1044093066154803695826250555500293316}{5176767955063443759527926306174262251} a^{2} - \frac{1655220652593536351987183524758208257}{5176767955063443759527926306174262251}$, $\frac{1}{119065662966459206469142305042008031773} a^{43} + \frac{2366306122525813891090010977660989726}{119065662966459206469142305042008031773} a^{41} + \frac{659241420377185617287538190701293598}{119065662966459206469142305042008031773} a^{39} - \frac{823722461331763048903311289996699497}{119065662966459206469142305042008031773} a^{37} - \frac{74633285535024869919254267388543196}{5176767955063443759527926306174262251} a^{35} - \frac{1102018233721431688549009340392226645}{119065662966459206469142305042008031773} a^{33} + \frac{692472151679804406039322617839847398}{119065662966459206469142305042008031773} a^{31} - \frac{854781014505855961290814810941202388}{119065662966459206469142305042008031773} a^{29} - \frac{699804487662845403224171832518458002}{119065662966459206469142305042008031773} a^{27} - \frac{1036494116831807342490339593844649112}{119065662966459206469142305042008031773} a^{25} - \frac{1395801635517096940389950280632949041}{119065662966459206469142305042008031773} a^{23} + \frac{1698051835025592547271696061539685296}{5176767955063443759527926306174262251} a^{21} - \frac{1318566500120216940814401688536628461}{5176767955063443759527926306174262251} a^{19} - \frac{199714160702359264876728874507936990}{5176767955063443759527926306174262251} a^{17} - \frac{1434525147276707909459488885610419622}{5176767955063443759527926306174262251} a^{15} - \frac{948912050754673992699344456400037232}{5176767955063443759527926306174262251} a^{13} - \frac{28562325843893428536399586216427882}{5176767955063443759527926306174262251} a^{11} + \frac{2536880362138947577469682819431071366}{5176767955063443759527926306174262251} a^{9} - \frac{2123925454680881557819778079015500742}{5176767955063443759527926306174262251} a^{7} + \frac{605187513823834534390531883007438827}{5176767955063443759527926306174262251} a^{5} + \frac{1044093066154803695826250555500293316}{5176767955063443759527926306174262251} a^{3} - \frac{1655220652593536351987183524758208257}{5176767955063443759527926306174262251} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $43$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 90452671457773850000000000000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{22}$ (as 44T2):
An abelian group of order 44 |
The 44 conjugacy class representatives for $C_2\times C_{22}$ |
Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $22^{2}$ | R | $22^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{4}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{4}$ | $22^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
5 | Data not computed | ||||||
23 | Data not computed |