Properties

Label 44.44.282...781.1
Degree $44$
Signature $[44, 0]$
Discriminant $2.829\times 10^{105}$
Root discriminant \(249.25\)
Ramified primes $23,29$
Class number not computed
Class group not computed
Galois group $C_{44}$ (as 44T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 - 245*x^42 + 238*x^41 + 27464*x^40 - 25798*x^39 - 1870216*x^38 + 1689630*x^37 + 86645247*x^36 - 74817837*x^35 - 2898974188*x^34 + 2375249329*x^33 + 72579947126*x^32 - 55953201823*x^31 - 1390382110630*x^30 + 998709697869*x^29 + 20665571127124*x^28 - 13674603242041*x^27 - 240238917307978*x^26 + 144516694613691*x^25 + 2191711606172907*x^24 - 1180094743877070*x^23 - 15680069546419541*x^22 + 7419430297867336*x^21 + 87555848961529704*x^20 - 35621383921138009*x^19 - 378178023714978041*x^18 + 128871770255036598*x^17 + 1246087932552175079*x^16 - 344680676241032240*x^15 - 3070152424219288766*x^14 + 664374849384426306*x^13 + 5499539488500745998*x^12 - 894737827553875328*x^11 - 6883781452983976207*x^10 + 818014176860906167*x^9 + 5684771260919185772*x^8 - 508187269302072418*x^7 - 2836917120327885752*x^6 + 230965518365555296*x^5 + 736177518063946879*x^4 - 79966127580583048*x^3 - 70130358520706481*x^2 + 13792867712635819*x - 669015421113803)
 
gp: K = bnfinit(y^44 - y^43 - 245*y^42 + 238*y^41 + 27464*y^40 - 25798*y^39 - 1870216*y^38 + 1689630*y^37 + 86645247*y^36 - 74817837*y^35 - 2898974188*y^34 + 2375249329*y^33 + 72579947126*y^32 - 55953201823*y^31 - 1390382110630*y^30 + 998709697869*y^29 + 20665571127124*y^28 - 13674603242041*y^27 - 240238917307978*y^26 + 144516694613691*y^25 + 2191711606172907*y^24 - 1180094743877070*y^23 - 15680069546419541*y^22 + 7419430297867336*y^21 + 87555848961529704*y^20 - 35621383921138009*y^19 - 378178023714978041*y^18 + 128871770255036598*y^17 + 1246087932552175079*y^16 - 344680676241032240*y^15 - 3070152424219288766*y^14 + 664374849384426306*y^13 + 5499539488500745998*y^12 - 894737827553875328*y^11 - 6883781452983976207*y^10 + 818014176860906167*y^9 + 5684771260919185772*y^8 - 508187269302072418*y^7 - 2836917120327885752*y^6 + 230965518365555296*y^5 + 736177518063946879*y^4 - 79966127580583048*y^3 - 70130358520706481*y^2 + 13792867712635819*y - 669015421113803, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 - x^43 - 245*x^42 + 238*x^41 + 27464*x^40 - 25798*x^39 - 1870216*x^38 + 1689630*x^37 + 86645247*x^36 - 74817837*x^35 - 2898974188*x^34 + 2375249329*x^33 + 72579947126*x^32 - 55953201823*x^31 - 1390382110630*x^30 + 998709697869*x^29 + 20665571127124*x^28 - 13674603242041*x^27 - 240238917307978*x^26 + 144516694613691*x^25 + 2191711606172907*x^24 - 1180094743877070*x^23 - 15680069546419541*x^22 + 7419430297867336*x^21 + 87555848961529704*x^20 - 35621383921138009*x^19 - 378178023714978041*x^18 + 128871770255036598*x^17 + 1246087932552175079*x^16 - 344680676241032240*x^15 - 3070152424219288766*x^14 + 664374849384426306*x^13 + 5499539488500745998*x^12 - 894737827553875328*x^11 - 6883781452983976207*x^10 + 818014176860906167*x^9 + 5684771260919185772*x^8 - 508187269302072418*x^7 - 2836917120327885752*x^6 + 230965518365555296*x^5 + 736177518063946879*x^4 - 79966127580583048*x^3 - 70130358520706481*x^2 + 13792867712635819*x - 669015421113803);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 - 245*x^42 + 238*x^41 + 27464*x^40 - 25798*x^39 - 1870216*x^38 + 1689630*x^37 + 86645247*x^36 - 74817837*x^35 - 2898974188*x^34 + 2375249329*x^33 + 72579947126*x^32 - 55953201823*x^31 - 1390382110630*x^30 + 998709697869*x^29 + 20665571127124*x^28 - 13674603242041*x^27 - 240238917307978*x^26 + 144516694613691*x^25 + 2191711606172907*x^24 - 1180094743877070*x^23 - 15680069546419541*x^22 + 7419430297867336*x^21 + 87555848961529704*x^20 - 35621383921138009*x^19 - 378178023714978041*x^18 + 128871770255036598*x^17 + 1246087932552175079*x^16 - 344680676241032240*x^15 - 3070152424219288766*x^14 + 664374849384426306*x^13 + 5499539488500745998*x^12 - 894737827553875328*x^11 - 6883781452983976207*x^10 + 818014176860906167*x^9 + 5684771260919185772*x^8 - 508187269302072418*x^7 - 2836917120327885752*x^6 + 230965518365555296*x^5 + 736177518063946879*x^4 - 79966127580583048*x^3 - 70130358520706481*x^2 + 13792867712635819*x - 669015421113803)
 

\( x^{44} - x^{43} - 245 x^{42} + 238 x^{41} + 27464 x^{40} - 25798 x^{39} - 1870216 x^{38} + \cdots - 669015421113803 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[44, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(282\!\cdots\!781\) \(\medspace = 23^{42}\cdot 29^{33}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(249.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $23^{21/22}29^{3/4}\approx 249.24681341311788$
Ramified primes:   \(23\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{29}) \)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(667=23\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{667}(1,·)$, $\chi_{667}(389,·)$, $\chi_{667}(262,·)$, $\chi_{667}(655,·)$, $\chi_{667}(144,·)$, $\chi_{667}(17,·)$, $\chi_{667}(146,·)$, $\chi_{667}(534,·)$, $\chi_{667}(407,·)$, $\chi_{667}(539,·)$, $\chi_{667}(157,·)$, $\chi_{667}(289,·)$, $\chi_{667}(173,·)$, $\chi_{667}(563,·)$, $\chi_{667}(59,·)$, $\chi_{667}(191,·)$, $\chi_{667}(579,·)$, $\chi_{667}(452,·)$, $\chi_{667}(581,·)$, $\chi_{667}(202,·)$, $\chi_{667}(463,·)$, $\chi_{667}(336,·)$, $\chi_{667}(597,·)$, $\chi_{667}(249,·)$, $\chi_{667}(592,·)$, $\chi_{667}(347,·)$, $\chi_{667}(349,·)$, $\chi_{667}(481,·)$, $\chi_{667}(610,·)$, $\chi_{667}(99,·)$, $\chi_{667}(273,·)$, $\chi_{667}(360,·)$, $\chi_{667}(233,·)$, $\chi_{667}(231,·)$, $\chi_{667}(492,·)$, $\chi_{667}(365,·)$, $\chi_{667}(626,·)$, $\chi_{667}(244,·)$, $\chi_{667}(117,·)$, $\chi_{667}(376,·)$, $\chi_{667}(505,·)$, $\chi_{667}(447,·)$, $\chi_{667}(637,·)$, $\chi_{667}(639,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{139}a^{33}+\frac{63}{139}a^{32}+\frac{55}{139}a^{30}-\frac{7}{139}a^{29}+\frac{36}{139}a^{28}+\frac{8}{139}a^{27}-\frac{39}{139}a^{26}+\frac{59}{139}a^{25}+\frac{53}{139}a^{24}+\frac{37}{139}a^{23}-\frac{61}{139}a^{22}+\frac{58}{139}a^{21}+\frac{6}{139}a^{20}+\frac{51}{139}a^{19}+\frac{50}{139}a^{18}+\frac{21}{139}a^{17}-\frac{51}{139}a^{16}-\frac{20}{139}a^{15}+\frac{69}{139}a^{14}+\frac{67}{139}a^{13}-\frac{7}{139}a^{12}+\frac{30}{139}a^{11}+\frac{42}{139}a^{10}+\frac{13}{139}a^{9}-\frac{32}{139}a^{8}-\frac{56}{139}a^{7}+\frac{39}{139}a^{6}-\frac{31}{139}a^{5}+\frac{6}{139}a^{4}-\frac{37}{139}a^{3}+\frac{41}{139}a^{2}-\frac{23}{139}a-\frac{26}{139}$, $\frac{1}{22\!\cdots\!67}a^{34}+\frac{3445049006556}{22\!\cdots\!67}a^{33}+\frac{294151439301228}{22\!\cdots\!67}a^{32}+\frac{27560169769239}{22\!\cdots\!67}a^{31}+\frac{10\!\cdots\!31}{22\!\cdots\!67}a^{30}+\frac{171691647294723}{22\!\cdots\!67}a^{29}-\frac{949241372413865}{22\!\cdots\!67}a^{28}+\frac{332178509014470}{22\!\cdots\!67}a^{27}+\frac{10\!\cdots\!65}{22\!\cdots\!67}a^{26}-\frac{383217560010110}{22\!\cdots\!67}a^{25}+\frac{372801926219074}{22\!\cdots\!67}a^{24}-\frac{10\!\cdots\!21}{22\!\cdots\!67}a^{23}-\frac{767510511419400}{22\!\cdots\!67}a^{22}+\frac{264482103288142}{22\!\cdots\!67}a^{21}-\frac{313924335370548}{22\!\cdots\!67}a^{20}-\frac{300213545255435}{22\!\cdots\!67}a^{19}+\frac{926800850902677}{22\!\cdots\!67}a^{18}-\frac{98630737827108}{22\!\cdots\!67}a^{17}-\frac{716077003733672}{22\!\cdots\!67}a^{16}-\frac{702051294682896}{22\!\cdots\!67}a^{15}+\frac{918077618927187}{22\!\cdots\!67}a^{14}+\frac{297837528679717}{22\!\cdots\!67}a^{13}+\frac{10\!\cdots\!47}{22\!\cdots\!67}a^{12}+\frac{10\!\cdots\!35}{22\!\cdots\!67}a^{11}+\frac{450629628010674}{22\!\cdots\!67}a^{10}-\frac{11\!\cdots\!63}{22\!\cdots\!67}a^{9}+\frac{526039468515532}{22\!\cdots\!67}a^{8}+\frac{207630882839486}{22\!\cdots\!67}a^{7}-\frac{423333591896739}{22\!\cdots\!67}a^{6}+\frac{10\!\cdots\!97}{22\!\cdots\!67}a^{5}+\frac{881399663085203}{22\!\cdots\!67}a^{4}-\frac{119407666427453}{22\!\cdots\!67}a^{3}+\frac{86064239039028}{22\!\cdots\!67}a^{2}-\frac{877126224056394}{22\!\cdots\!67}a-\frac{887143913933421}{22\!\cdots\!67}$, $\frac{1}{22\!\cdots\!67}a^{35}+\frac{8244229067945}{22\!\cdots\!67}a^{33}+\frac{691278913657533}{22\!\cdots\!67}a^{32}-\frac{893678332992650}{22\!\cdots\!67}a^{31}-\frac{287395601800894}{22\!\cdots\!67}a^{30}-\frac{459141341721954}{22\!\cdots\!67}a^{29}-\frac{749596435148456}{22\!\cdots\!67}a^{28}-\frac{454894747251211}{22\!\cdots\!67}a^{27}+\frac{10\!\cdots\!71}{22\!\cdots\!67}a^{26}-\frac{240615557372136}{22\!\cdots\!67}a^{25}-\frac{11\!\cdots\!67}{22\!\cdots\!67}a^{24}-\frac{736323173198752}{22\!\cdots\!67}a^{23}-\frac{10\!\cdots\!24}{22\!\cdots\!67}a^{22}+\frac{680389533684884}{22\!\cdots\!67}a^{21}+\frac{775512867090856}{22\!\cdots\!67}a^{20}-\frac{393143216352802}{22\!\cdots\!67}a^{19}+\frac{442820084856026}{22\!\cdots\!67}a^{18}-\frac{890310037283172}{22\!\cdots\!67}a^{17}+\frac{631090058588183}{22\!\cdots\!67}a^{16}-\frac{199829105870762}{22\!\cdots\!67}a^{15}-\frac{10\!\cdots\!91}{22\!\cdots\!67}a^{14}-\frac{873280563606007}{22\!\cdots\!67}a^{13}-\frac{235056339464359}{22\!\cdots\!67}a^{12}-\frac{480093408015428}{22\!\cdots\!67}a^{11}+\frac{928382007959791}{22\!\cdots\!67}a^{10}+\frac{810697453107927}{22\!\cdots\!67}a^{9}-\frac{303512844144325}{22\!\cdots\!67}a^{8}-\frac{598097370704873}{22\!\cdots\!67}a^{7}-\frac{185624750550091}{22\!\cdots\!67}a^{6}-\frac{835676318696354}{22\!\cdots\!67}a^{5}+\frac{367480232647917}{22\!\cdots\!67}a^{4}-\frac{931513413969189}{22\!\cdots\!67}a^{3}+\frac{235917931439519}{22\!\cdots\!67}a^{2}+\frac{941805560185985}{22\!\cdots\!67}a+\frac{577800473940566}{22\!\cdots\!67}$, $\frac{1}{22\!\cdots\!67}a^{36}+\frac{522961692316}{22\!\cdots\!67}a^{33}-\frac{502321057734001}{22\!\cdots\!67}a^{32}+\frac{236883119666154}{22\!\cdots\!67}a^{31}+\frac{832722093807129}{22\!\cdots\!67}a^{30}+\frac{270533099127026}{22\!\cdots\!67}a^{29}-\frac{959358845985506}{22\!\cdots\!67}a^{28}+\frac{953718111579022}{22\!\cdots\!67}a^{27}+\frac{981296213714708}{22\!\cdots\!67}a^{26}-\frac{506744675558648}{22\!\cdots\!67}a^{25}-\frac{304128459662635}{22\!\cdots\!67}a^{24}-\frac{941009815376074}{22\!\cdots\!67}a^{23}-\frac{186283304075852}{22\!\cdots\!67}a^{22}+\frac{453634164093674}{22\!\cdots\!67}a^{21}-\frac{737660827747590}{22\!\cdots\!67}a^{20}-\frac{270782892405096}{22\!\cdots\!67}a^{19}+\frac{917466001634140}{22\!\cdots\!67}a^{18}+\frac{259292214813248}{22\!\cdots\!67}a^{17}+\frac{10\!\cdots\!27}{22\!\cdots\!67}a^{16}-\frac{993280932561415}{22\!\cdots\!67}a^{15}-\frac{585108031648633}{22\!\cdots\!67}a^{14}+\frac{196390648786019}{22\!\cdots\!67}a^{13}+\frac{112783649148577}{22\!\cdots\!67}a^{12}+\frac{329265381179598}{22\!\cdots\!67}a^{11}+\frac{11\!\cdots\!10}{22\!\cdots\!67}a^{10}+\frac{11\!\cdots\!64}{22\!\cdots\!67}a^{9}+\frac{747612441440723}{22\!\cdots\!67}a^{8}+\frac{198571356853698}{22\!\cdots\!67}a^{7}-\frac{107758574260928}{22\!\cdots\!67}a^{6}-\frac{897417748728642}{22\!\cdots\!67}a^{5}-\frac{207992004369570}{22\!\cdots\!67}a^{4}-\frac{102773537852359}{22\!\cdots\!67}a^{3}+\frac{199628168311764}{22\!\cdots\!67}a^{2}+\frac{188981402743915}{22\!\cdots\!67}a-\frac{991816909031218}{22\!\cdots\!67}$, $\frac{1}{22\!\cdots\!67}a^{37}-\frac{2010104925250}{22\!\cdots\!67}a^{33}-\frac{689357063079322}{22\!\cdots\!67}a^{32}-\frac{364194323588789}{22\!\cdots\!67}a^{31}-\frac{163822788769697}{22\!\cdots\!67}a^{30}-\frac{10\!\cdots\!76}{22\!\cdots\!67}a^{29}+\frac{78853063352512}{22\!\cdots\!67}a^{28}-\frac{197443924308262}{22\!\cdots\!67}a^{27}-\frac{958904502651046}{22\!\cdots\!67}a^{26}+\frac{259279165542973}{22\!\cdots\!67}a^{25}+\frac{117583809662097}{22\!\cdots\!67}a^{24}-\frac{428966753800203}{22\!\cdots\!67}a^{23}-\frac{205056516226964}{22\!\cdots\!67}a^{22}+\frac{971218989785806}{22\!\cdots\!67}a^{21}-\frac{869830792263963}{22\!\cdots\!67}a^{20}-\frac{92655849762553}{22\!\cdots\!67}a^{19}-\frac{626673330060151}{22\!\cdots\!67}a^{18}-\frac{178764127572864}{22\!\cdots\!67}a^{17}-\frac{10\!\cdots\!46}{22\!\cdots\!67}a^{16}-\frac{616642772074987}{22\!\cdots\!67}a^{15}-\frac{75661703631167}{22\!\cdots\!67}a^{14}-\frac{100665602322676}{22\!\cdots\!67}a^{13}-\frac{405470258298178}{22\!\cdots\!67}a^{12}+\frac{461703826484588}{22\!\cdots\!67}a^{11}-\frac{106901923574250}{22\!\cdots\!67}a^{10}-\frac{155483813167640}{22\!\cdots\!67}a^{9}+\frac{47844327376861}{22\!\cdots\!67}a^{8}-\frac{562699865623436}{22\!\cdots\!67}a^{7}+\frac{10\!\cdots\!32}{22\!\cdots\!67}a^{6}-\frac{126524980634099}{22\!\cdots\!67}a^{5}+\frac{300511201954757}{22\!\cdots\!67}a^{4}+\frac{923849263802092}{22\!\cdots\!67}a^{3}-\frac{98797429517386}{22\!\cdots\!67}a^{2}-\frac{594161601301260}{22\!\cdots\!67}a+\frac{414443916002075}{22\!\cdots\!67}$, $\frac{1}{22\!\cdots\!67}a^{38}+\frac{5291369847994}{22\!\cdots\!67}a^{33}+\frac{896012877280495}{22\!\cdots\!67}a^{32}-\frac{564596814684050}{22\!\cdots\!67}a^{31}+\frac{449993160468202}{22\!\cdots\!67}a^{30}+\frac{952205702416732}{22\!\cdots\!67}a^{29}+\frac{646613604640463}{22\!\cdots\!67}a^{28}+\frac{10\!\cdots\!63}{22\!\cdots\!67}a^{27}-\frac{870506408225841}{22\!\cdots\!67}a^{26}-\frac{311807175803011}{22\!\cdots\!67}a^{25}-\frac{890383898513765}{22\!\cdots\!67}a^{24}+\frac{747304342208907}{22\!\cdots\!67}a^{23}+\frac{544491092533848}{22\!\cdots\!67}a^{22}-\frac{838314797613240}{22\!\cdots\!67}a^{21}+\frac{122705784078782}{22\!\cdots\!67}a^{20}-\frac{137261780183995}{22\!\cdots\!67}a^{19}+\frac{88892337897347}{22\!\cdots\!67}a^{18}-\frac{10\!\cdots\!17}{22\!\cdots\!67}a^{17}+\frac{806927495122775}{22\!\cdots\!67}a^{16}+\frac{726858463416968}{22\!\cdots\!67}a^{15}+\frac{991738763563153}{22\!\cdots\!67}a^{14}+\frac{465805173763051}{22\!\cdots\!67}a^{13}+\frac{329844932858149}{22\!\cdots\!67}a^{12}+\frac{455089107688238}{22\!\cdots\!67}a^{11}-\frac{45702789751654}{22\!\cdots\!67}a^{10}+\frac{688239317260221}{22\!\cdots\!67}a^{9}-\frac{4502565756941}{16530532223453}a^{8}+\frac{207404908523724}{22\!\cdots\!67}a^{7}+\frac{10\!\cdots\!13}{22\!\cdots\!67}a^{6}-\frac{11\!\cdots\!73}{22\!\cdots\!67}a^{5}+\frac{358956833837074}{22\!\cdots\!67}a^{4}+\frac{995324929295495}{22\!\cdots\!67}a^{3}-\frac{251379395713364}{22\!\cdots\!67}a^{2}+\frac{969580334955717}{22\!\cdots\!67}a-\frac{375487486147798}{22\!\cdots\!67}$, $\frac{1}{22\!\cdots\!67}a^{39}-\frac{7199811372735}{22\!\cdots\!67}a^{33}+\frac{420570877637476}{22\!\cdots\!67}a^{32}-\frac{10\!\cdots\!62}{22\!\cdots\!67}a^{31}+\frac{615402472242010}{22\!\cdots\!67}a^{30}-\frac{270619663252872}{22\!\cdots\!67}a^{29}+\frac{956639617613120}{22\!\cdots\!67}a^{28}-\frac{511720129686397}{22\!\cdots\!67}a^{27}-\frac{960968381836401}{22\!\cdots\!67}a^{26}-\frac{2708653715529}{16530532223453}a^{25}+\frac{631845537587556}{22\!\cdots\!67}a^{24}-\frac{796547622739457}{22\!\cdots\!67}a^{23}-\frac{304476421228804}{22\!\cdots\!67}a^{22}-\frac{684206643405430}{22\!\cdots\!67}a^{21}-\frac{300948968854860}{22\!\cdots\!67}a^{20}-\frac{602639386240790}{22\!\cdots\!67}a^{19}-\frac{10\!\cdots\!33}{22\!\cdots\!67}a^{18}+\frac{265775616330019}{22\!\cdots\!67}a^{17}+\frac{879482160086036}{22\!\cdots\!67}a^{16}+\frac{134709656723506}{22\!\cdots\!67}a^{15}+\frac{481811969759663}{22\!\cdots\!67}a^{14}-\frac{86741164086447}{22\!\cdots\!67}a^{13}+\frac{601662064983059}{22\!\cdots\!67}a^{12}-\frac{395535285582116}{22\!\cdots\!67}a^{11}+\frac{10\!\cdots\!94}{22\!\cdots\!67}a^{10}+\frac{885008442120184}{22\!\cdots\!67}a^{9}-\frac{179086292063370}{22\!\cdots\!67}a^{8}+\frac{11\!\cdots\!82}{22\!\cdots\!67}a^{7}-\frac{511740307930557}{22\!\cdots\!67}a^{6}-\frac{10\!\cdots\!84}{22\!\cdots\!67}a^{5}-\frac{992365920544978}{22\!\cdots\!67}a^{4}-\frac{511472734302692}{22\!\cdots\!67}a^{3}+\frac{419348538883149}{22\!\cdots\!67}a^{2}-\frac{312995324776061}{22\!\cdots\!67}a+\frac{664618652459166}{22\!\cdots\!67}$, $\frac{1}{22\!\cdots\!67}a^{40}-\frac{795558285358}{22\!\cdots\!67}a^{33}-\frac{385610578092827}{22\!\cdots\!67}a^{32}-\frac{272994587469920}{22\!\cdots\!67}a^{31}-\frac{161119692659477}{22\!\cdots\!67}a^{30}-\frac{718150667615346}{22\!\cdots\!67}a^{29}-\frac{749615176090614}{22\!\cdots\!67}a^{28}+\frac{432798750539435}{22\!\cdots\!67}a^{27}-\frac{533278522404671}{22\!\cdots\!67}a^{26}+\frac{387736873210801}{22\!\cdots\!67}a^{25}-\frac{91986089118230}{22\!\cdots\!67}a^{24}-\frac{796135492622356}{22\!\cdots\!67}a^{23}-\frac{3779258825861}{16530532223453}a^{22}-\frac{420487878971722}{22\!\cdots\!67}a^{21}+\frac{51555092867009}{22\!\cdots\!67}a^{20}+\frac{422660528220450}{22\!\cdots\!67}a^{19}-\frac{364660979589156}{22\!\cdots\!67}a^{18}+\frac{610667950661309}{22\!\cdots\!67}a^{17}-\frac{304273250640754}{22\!\cdots\!67}a^{16}-\frac{590741848696212}{22\!\cdots\!67}a^{15}-\frac{532005554961418}{22\!\cdots\!67}a^{14}-\frac{105423623079580}{22\!\cdots\!67}a^{13}-\frac{893278437859077}{22\!\cdots\!67}a^{12}+\frac{622249281305680}{22\!\cdots\!67}a^{11}+\frac{348984297038900}{22\!\cdots\!67}a^{10}+\frac{468070679744141}{22\!\cdots\!67}a^{9}-\frac{61511213701345}{22\!\cdots\!67}a^{8}+\frac{691497906550133}{22\!\cdots\!67}a^{7}+\frac{940809069086109}{22\!\cdots\!67}a^{6}+\frac{11\!\cdots\!84}{22\!\cdots\!67}a^{5}-\frac{81501044550700}{22\!\cdots\!67}a^{4}-\frac{3826529850810}{22\!\cdots\!67}a^{3}+\frac{556138380868247}{22\!\cdots\!67}a^{2}-\frac{39579659174631}{22\!\cdots\!67}a+\frac{750002656230122}{22\!\cdots\!67}$, $\frac{1}{63\!\cdots\!59}a^{41}+\frac{18}{63\!\cdots\!59}a^{40}+\frac{19}{63\!\cdots\!59}a^{39}-\frac{25}{63\!\cdots\!59}a^{38}-\frac{64}{63\!\cdots\!59}a^{37}+\frac{5}{63\!\cdots\!59}a^{36}+\frac{79}{63\!\cdots\!59}a^{35}-\frac{127}{63\!\cdots\!59}a^{34}+\frac{562973793894962}{63\!\cdots\!59}a^{33}-\frac{26\!\cdots\!71}{63\!\cdots\!59}a^{32}-\frac{19\!\cdots\!17}{63\!\cdots\!59}a^{31}+\frac{25\!\cdots\!35}{63\!\cdots\!59}a^{30}-\frac{26\!\cdots\!59}{63\!\cdots\!59}a^{29}+\frac{19\!\cdots\!21}{63\!\cdots\!59}a^{28}+\frac{38\!\cdots\!76}{63\!\cdots\!59}a^{27}-\frac{16\!\cdots\!66}{63\!\cdots\!59}a^{26}+\frac{12\!\cdots\!05}{63\!\cdots\!59}a^{25}+\frac{22\!\cdots\!70}{63\!\cdots\!59}a^{24}-\frac{90\!\cdots\!09}{63\!\cdots\!59}a^{23}-\frac{12\!\cdots\!92}{63\!\cdots\!59}a^{22}-\frac{19\!\cdots\!49}{63\!\cdots\!59}a^{21}+\frac{14\!\cdots\!19}{63\!\cdots\!59}a^{20}+\frac{21\!\cdots\!40}{63\!\cdots\!59}a^{19}+\frac{18\!\cdots\!69}{63\!\cdots\!59}a^{18}-\frac{11\!\cdots\!52}{63\!\cdots\!59}a^{17}-\frac{17\!\cdots\!40}{63\!\cdots\!59}a^{16}-\frac{18\!\cdots\!06}{63\!\cdots\!59}a^{15}+\frac{26\!\cdots\!21}{63\!\cdots\!59}a^{14}-\frac{20\!\cdots\!00}{63\!\cdots\!59}a^{13}-\frac{64\!\cdots\!15}{63\!\cdots\!59}a^{12}+\frac{30\!\cdots\!88}{63\!\cdots\!59}a^{11}-\frac{12\!\cdots\!98}{63\!\cdots\!59}a^{10}+\frac{31\!\cdots\!67}{63\!\cdots\!59}a^{9}+\frac{19\!\cdots\!08}{63\!\cdots\!59}a^{8}+\frac{49\!\cdots\!76}{63\!\cdots\!59}a^{7}+\frac{18\!\cdots\!43}{63\!\cdots\!59}a^{6}-\frac{25\!\cdots\!83}{63\!\cdots\!59}a^{5}-\frac{875455801563379}{22\!\cdots\!67}a^{4}-\frac{12\!\cdots\!65}{63\!\cdots\!59}a^{3}+\frac{23\!\cdots\!20}{63\!\cdots\!59}a^{2}+\frac{14\!\cdots\!21}{63\!\cdots\!59}a-\frac{89\!\cdots\!36}{63\!\cdots\!59}$, $\frac{1}{63\!\cdots\!59}a^{42}-\frac{28}{63\!\cdots\!59}a^{40}-\frac{90}{63\!\cdots\!59}a^{39}+\frac{109}{63\!\cdots\!59}a^{38}+\frac{49}{63\!\cdots\!59}a^{37}-\frac{11}{63\!\cdots\!59}a^{36}+\frac{113}{63\!\cdots\!59}a^{35}+\frac{28}{63\!\cdots\!59}a^{34}-\frac{19\!\cdots\!75}{63\!\cdots\!59}a^{33}+\frac{17\!\cdots\!50}{63\!\cdots\!59}a^{32}-\frac{19\!\cdots\!36}{63\!\cdots\!59}a^{31}-\frac{23\!\cdots\!35}{63\!\cdots\!59}a^{30}-\frac{19\!\cdots\!85}{63\!\cdots\!59}a^{29}-\frac{17\!\cdots\!01}{63\!\cdots\!59}a^{28}+\frac{27\!\cdots\!35}{63\!\cdots\!59}a^{27}-\frac{10\!\cdots\!48}{63\!\cdots\!59}a^{26}+\frac{38\!\cdots\!51}{63\!\cdots\!59}a^{25}+\frac{13\!\cdots\!12}{63\!\cdots\!59}a^{24}+\frac{24\!\cdots\!61}{63\!\cdots\!59}a^{23}-\frac{64\!\cdots\!33}{63\!\cdots\!59}a^{22}-\frac{26\!\cdots\!53}{63\!\cdots\!59}a^{21}-\frac{91\!\cdots\!65}{63\!\cdots\!59}a^{20}+\frac{63\!\cdots\!54}{63\!\cdots\!59}a^{19}-\frac{94\!\cdots\!85}{63\!\cdots\!59}a^{18}+\frac{15\!\cdots\!96}{63\!\cdots\!59}a^{17}-\frac{60\!\cdots\!20}{63\!\cdots\!59}a^{16}+\frac{62\!\cdots\!83}{63\!\cdots\!59}a^{15}+\frac{18\!\cdots\!45}{63\!\cdots\!59}a^{14}-\frac{22\!\cdots\!78}{63\!\cdots\!59}a^{13}+\frac{10\!\cdots\!75}{63\!\cdots\!59}a^{12}-\frac{43\!\cdots\!65}{63\!\cdots\!59}a^{11}+\frac{12\!\cdots\!75}{63\!\cdots\!59}a^{10}+\frac{62\!\cdots\!07}{63\!\cdots\!59}a^{9}+\frac{10\!\cdots\!27}{63\!\cdots\!59}a^{8}+\frac{15\!\cdots\!81}{63\!\cdots\!59}a^{7}+\frac{30\!\cdots\!84}{63\!\cdots\!59}a^{6}+\frac{31\!\cdots\!32}{63\!\cdots\!59}a^{5}-\frac{16\!\cdots\!48}{63\!\cdots\!59}a^{4}-\frac{28\!\cdots\!58}{63\!\cdots\!59}a^{3}-\frac{14\!\cdots\!19}{63\!\cdots\!59}a^{2}-\frac{75\!\cdots\!92}{63\!\cdots\!59}a-\frac{12\!\cdots\!12}{63\!\cdots\!59}$, $\frac{1}{10\!\cdots\!63}a^{43}-\frac{48\!\cdots\!62}{10\!\cdots\!63}a^{42}-\frac{56\!\cdots\!36}{10\!\cdots\!63}a^{41}+\frac{17\!\cdots\!33}{10\!\cdots\!63}a^{40}+\frac{17\!\cdots\!02}{10\!\cdots\!63}a^{39}-\frac{15\!\cdots\!39}{10\!\cdots\!63}a^{38}+\frac{41\!\cdots\!84}{10\!\cdots\!63}a^{37}-\frac{11\!\cdots\!47}{10\!\cdots\!63}a^{36}-\frac{56\!\cdots\!04}{10\!\cdots\!63}a^{35}-\frac{10\!\cdots\!66}{10\!\cdots\!63}a^{34}+\frac{20\!\cdots\!50}{10\!\cdots\!63}a^{33}+\frac{40\!\cdots\!53}{10\!\cdots\!63}a^{32}-\frac{18\!\cdots\!24}{10\!\cdots\!63}a^{31}-\frac{10\!\cdots\!83}{10\!\cdots\!63}a^{30}+\frac{30\!\cdots\!66}{10\!\cdots\!63}a^{29}-\frac{13\!\cdots\!93}{10\!\cdots\!63}a^{28}+\frac{19\!\cdots\!43}{10\!\cdots\!63}a^{27}+\frac{26\!\cdots\!63}{10\!\cdots\!63}a^{26}-\frac{48\!\cdots\!61}{10\!\cdots\!63}a^{25}+\frac{47\!\cdots\!81}{10\!\cdots\!63}a^{24}+\frac{48\!\cdots\!71}{10\!\cdots\!63}a^{23}-\frac{23\!\cdots\!53}{10\!\cdots\!63}a^{22}-\frac{26\!\cdots\!44}{10\!\cdots\!63}a^{21}-\frac{20\!\cdots\!47}{10\!\cdots\!63}a^{20}+\frac{21\!\cdots\!76}{10\!\cdots\!63}a^{19}-\frac{14\!\cdots\!11}{10\!\cdots\!63}a^{18}-\frac{31\!\cdots\!38}{10\!\cdots\!63}a^{17}-\frac{35\!\cdots\!18}{10\!\cdots\!63}a^{16}-\frac{21\!\cdots\!46}{10\!\cdots\!63}a^{15}+\frac{43\!\cdots\!20}{10\!\cdots\!63}a^{14}+\frac{13\!\cdots\!20}{10\!\cdots\!63}a^{13}+\frac{24\!\cdots\!02}{10\!\cdots\!63}a^{12}-\frac{30\!\cdots\!59}{10\!\cdots\!63}a^{11}-\frac{26\!\cdots\!15}{10\!\cdots\!63}a^{10}+\frac{42\!\cdots\!13}{10\!\cdots\!63}a^{9}+\frac{47\!\cdots\!77}{10\!\cdots\!63}a^{8}-\frac{20\!\cdots\!47}{10\!\cdots\!63}a^{7}+\frac{25\!\cdots\!92}{10\!\cdots\!63}a^{6}-\frac{29\!\cdots\!63}{10\!\cdots\!63}a^{5}-\frac{23\!\cdots\!94}{10\!\cdots\!63}a^{4}+\frac{29\!\cdots\!36}{10\!\cdots\!63}a^{3}-\frac{27\!\cdots\!84}{10\!\cdots\!63}a^{2}-\frac{18\!\cdots\!42}{10\!\cdots\!63}a-\frac{38\!\cdots\!10}{10\!\cdots\!63}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $43$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 - 245*x^42 + 238*x^41 + 27464*x^40 - 25798*x^39 - 1870216*x^38 + 1689630*x^37 + 86645247*x^36 - 74817837*x^35 - 2898974188*x^34 + 2375249329*x^33 + 72579947126*x^32 - 55953201823*x^31 - 1390382110630*x^30 + 998709697869*x^29 + 20665571127124*x^28 - 13674603242041*x^27 - 240238917307978*x^26 + 144516694613691*x^25 + 2191711606172907*x^24 - 1180094743877070*x^23 - 15680069546419541*x^22 + 7419430297867336*x^21 + 87555848961529704*x^20 - 35621383921138009*x^19 - 378178023714978041*x^18 + 128871770255036598*x^17 + 1246087932552175079*x^16 - 344680676241032240*x^15 - 3070152424219288766*x^14 + 664374849384426306*x^13 + 5499539488500745998*x^12 - 894737827553875328*x^11 - 6883781452983976207*x^10 + 818014176860906167*x^9 + 5684771260919185772*x^8 - 508187269302072418*x^7 - 2836917120327885752*x^6 + 230965518365555296*x^5 + 736177518063946879*x^4 - 79966127580583048*x^3 - 70130358520706481*x^2 + 13792867712635819*x - 669015421113803)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 - x^43 - 245*x^42 + 238*x^41 + 27464*x^40 - 25798*x^39 - 1870216*x^38 + 1689630*x^37 + 86645247*x^36 - 74817837*x^35 - 2898974188*x^34 + 2375249329*x^33 + 72579947126*x^32 - 55953201823*x^31 - 1390382110630*x^30 + 998709697869*x^29 + 20665571127124*x^28 - 13674603242041*x^27 - 240238917307978*x^26 + 144516694613691*x^25 + 2191711606172907*x^24 - 1180094743877070*x^23 - 15680069546419541*x^22 + 7419430297867336*x^21 + 87555848961529704*x^20 - 35621383921138009*x^19 - 378178023714978041*x^18 + 128871770255036598*x^17 + 1246087932552175079*x^16 - 344680676241032240*x^15 - 3070152424219288766*x^14 + 664374849384426306*x^13 + 5499539488500745998*x^12 - 894737827553875328*x^11 - 6883781452983976207*x^10 + 818014176860906167*x^9 + 5684771260919185772*x^8 - 508187269302072418*x^7 - 2836917120327885752*x^6 + 230965518365555296*x^5 + 736177518063946879*x^4 - 79966127580583048*x^3 - 70130358520706481*x^2 + 13792867712635819*x - 669015421113803, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 - x^43 - 245*x^42 + 238*x^41 + 27464*x^40 - 25798*x^39 - 1870216*x^38 + 1689630*x^37 + 86645247*x^36 - 74817837*x^35 - 2898974188*x^34 + 2375249329*x^33 + 72579947126*x^32 - 55953201823*x^31 - 1390382110630*x^30 + 998709697869*x^29 + 20665571127124*x^28 - 13674603242041*x^27 - 240238917307978*x^26 + 144516694613691*x^25 + 2191711606172907*x^24 - 1180094743877070*x^23 - 15680069546419541*x^22 + 7419430297867336*x^21 + 87555848961529704*x^20 - 35621383921138009*x^19 - 378178023714978041*x^18 + 128871770255036598*x^17 + 1246087932552175079*x^16 - 344680676241032240*x^15 - 3070152424219288766*x^14 + 664374849384426306*x^13 + 5499539488500745998*x^12 - 894737827553875328*x^11 - 6883781452983976207*x^10 + 818014176860906167*x^9 + 5684771260919185772*x^8 - 508187269302072418*x^7 - 2836917120327885752*x^6 + 230965518365555296*x^5 + 736177518063946879*x^4 - 79966127580583048*x^3 - 70130358520706481*x^2 + 13792867712635819*x - 669015421113803);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 - 245*x^42 + 238*x^41 + 27464*x^40 - 25798*x^39 - 1870216*x^38 + 1689630*x^37 + 86645247*x^36 - 74817837*x^35 - 2898974188*x^34 + 2375249329*x^33 + 72579947126*x^32 - 55953201823*x^31 - 1390382110630*x^30 + 998709697869*x^29 + 20665571127124*x^28 - 13674603242041*x^27 - 240238917307978*x^26 + 144516694613691*x^25 + 2191711606172907*x^24 - 1180094743877070*x^23 - 15680069546419541*x^22 + 7419430297867336*x^21 + 87555848961529704*x^20 - 35621383921138009*x^19 - 378178023714978041*x^18 + 128871770255036598*x^17 + 1246087932552175079*x^16 - 344680676241032240*x^15 - 3070152424219288766*x^14 + 664374849384426306*x^13 + 5499539488500745998*x^12 - 894737827553875328*x^11 - 6883781452983976207*x^10 + 818014176860906167*x^9 + 5684771260919185772*x^8 - 508187269302072418*x^7 - 2836917120327885752*x^6 + 230965518365555296*x^5 + 736177518063946879*x^4 - 79966127580583048*x^3 - 70130358520706481*x^2 + 13792867712635819*x - 669015421113803);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{44}$ (as 44T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 44
The 44 conjugacy class representatives for $C_{44}$
Character table for $C_{44}$

Intermediate fields

\(\Q(\sqrt{29}) \), 4.4.12901781.1, \(\Q(\zeta_{23})^+\), 22.22.20937975979670626213353681795476767790826629.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $44$ $44$ ${\href{/padicField/5.11.0.1}{11} }^{4}$ $22^{2}$ $44$ $22^{2}$ $44$ $44$ R R $44$ $44$ $44$ $44$ ${\href{/padicField/47.4.0.1}{4} }^{11}$ $22^{2}$ ${\href{/padicField/59.11.0.1}{11} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(23\) Copy content Toggle raw display 23.22.21.17$x^{22} + 23$$22$$1$$21$22T1$[\ ]_{22}$
23.22.21.17$x^{22} + 23$$22$$1$$21$22T1$[\ ]_{22}$
\(29\) Copy content Toggle raw display Deg $44$$4$$11$$33$