Normalized defining polynomial
\( x^{44} - 230 x^{42} + 24380 x^{40} - 1582400 x^{38} + 70481200 x^{36} - 2288408000 x^{34} + 56161768000 x^{32} - 1066130960000 x^{30} + 15888506720000 x^{28} - 187591348800000 x^{26} + 1762976128000000 x^{24} - 13201383232000000 x^{22} + 78572903232000000 x^{20} - 369514540800000000 x^{18} + 1359724672000000000 x^{16} - 3859279296000000000 x^{14} + 8280581734400000000 x^{12} - 13061238528000000000 x^{10} + 14562955264000000000 x^{8} - 10844753920000000000 x^{6} + 4945684480000000000 x^{4} - 1191731200000000000 x^{2} + 108339200000000000 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{20} a^{4}$, $\frac{1}{20} a^{5}$, $\frac{1}{40} a^{6}$, $\frac{1}{40} a^{7}$, $\frac{1}{400} a^{8}$, $\frac{1}{400} a^{9}$, $\frac{1}{800} a^{10}$, $\frac{1}{800} a^{11}$, $\frac{1}{8000} a^{12}$, $\frac{1}{8000} a^{13}$, $\frac{1}{16000} a^{14}$, $\frac{1}{16000} a^{15}$, $\frac{1}{160000} a^{16}$, $\frac{1}{160000} a^{17}$, $\frac{1}{320000} a^{18}$, $\frac{1}{320000} a^{19}$, $\frac{1}{3200000} a^{20}$, $\frac{1}{3200000} a^{21}$, $\frac{1}{147200000} a^{22}$, $\frac{1}{147200000} a^{23}$, $\frac{1}{1472000000} a^{24}$, $\frac{1}{1472000000} a^{25}$, $\frac{1}{2944000000} a^{26}$, $\frac{1}{2944000000} a^{27}$, $\frac{1}{29440000000} a^{28}$, $\frac{1}{29440000000} a^{29}$, $\frac{1}{58880000000} a^{30}$, $\frac{1}{58880000000} a^{31}$, $\frac{1}{588800000000} a^{32}$, $\frac{1}{588800000000} a^{33}$, $\frac{1}{1177600000000} a^{34}$, $\frac{1}{1177600000000} a^{35}$, $\frac{1}{11776000000000} a^{36}$, $\frac{1}{11776000000000} a^{37}$, $\frac{1}{23552000000000} a^{38}$, $\frac{1}{23552000000000} a^{39}$, $\frac{1}{32737280000000000} a^{40} - \frac{19}{1636864000000000} a^{38} + \frac{57}{1636864000000000} a^{36} - \frac{37}{163686400000000} a^{34} + \frac{7}{10230400000000} a^{32} + \frac{1}{1023040000000} a^{30} - \frac{33}{2046080000000} a^{28} + \frac{9}{204608000000} a^{26} - \frac{1}{3197000000} a^{24} + \frac{3}{5115200000} a^{22} - \frac{13}{88960000} a^{20} + \frac{61}{44480000} a^{18} - \frac{1}{5560000} a^{16} + \frac{61}{2224000} a^{14} + \frac{11}{1112000} a^{12} + \frac{7}{111200} a^{10} - \frac{7}{27800} a^{8} - \frac{27}{2780} a^{6} + \frac{3}{695} a^{4} - \frac{29}{278} a^{2} + \frac{50}{139}$, $\frac{1}{32737280000000000} a^{41} - \frac{19}{1636864000000000} a^{39} + \frac{57}{1636864000000000} a^{37} - \frac{37}{163686400000000} a^{35} + \frac{7}{10230400000000} a^{33} + \frac{1}{1023040000000} a^{31} - \frac{33}{2046080000000} a^{29} + \frac{9}{204608000000} a^{27} - \frac{1}{3197000000} a^{25} + \frac{3}{5115200000} a^{23} - \frac{13}{88960000} a^{21} + \frac{61}{44480000} a^{19} - \frac{1}{5560000} a^{17} + \frac{61}{2224000} a^{15} + \frac{11}{1112000} a^{13} + \frac{7}{111200} a^{11} - \frac{7}{27800} a^{9} - \frac{27}{2780} a^{7} + \frac{3}{695} a^{5} - \frac{29}{278} a^{3} + \frac{50}{139} a$, $\frac{1}{27987027405967360000000000} a^{42} - \frac{4101983}{3498378425745920000000000} a^{40} + \frac{18964067483}{1399351370298368000000000} a^{38} + \frac{2059442837}{349837842574592000000000} a^{36} - \frac{115769181}{349837842574592000000} a^{34} - \frac{300910469}{17491892128729600000000} a^{32} - \frac{5740952073}{1749189212872960000000} a^{30} + \frac{82769191}{38025852453760000000} a^{28} + \frac{9668509}{273310814511400000} a^{26} + \frac{17097125271}{87459460643648000000} a^{24} - \frac{13064830797}{8745946064364800000} a^{22} + \frac{17927745913}{190129262268800000} a^{20} - \frac{6433289177}{9506463113440000} a^{18} - \frac{200687567}{1188307889180000} a^{16} + \frac{11825438567}{475323155672000} a^{14} + \frac{609999133}{11883078891800} a^{12} + \frac{8842120783}{47532315567200} a^{10} - \frac{596365133}{594153944590} a^{8} + \frac{3923259251}{594153944590} a^{6} - \frac{22412302837}{1188307889180} a^{4} + \frac{7428755939}{118830788918} a^{2} + \frac{17364519196}{59415394459}$, $\frac{1}{27987027405967360000000000} a^{43} - \frac{4101983}{3498378425745920000000000} a^{41} + \frac{18964067483}{1399351370298368000000000} a^{39} + \frac{2059442837}{349837842574592000000000} a^{37} - \frac{115769181}{349837842574592000000} a^{35} - \frac{300910469}{17491892128729600000000} a^{33} - \frac{5740952073}{1749189212872960000000} a^{31} + \frac{82769191}{38025852453760000000} a^{29} + \frac{9668509}{273310814511400000} a^{27} + \frac{17097125271}{87459460643648000000} a^{25} - \frac{13064830797}{8745946064364800000} a^{23} + \frac{17927745913}{190129262268800000} a^{21} - \frac{6433289177}{9506463113440000} a^{19} - \frac{200687567}{1188307889180000} a^{17} + \frac{11825438567}{475323155672000} a^{15} + \frac{609999133}{11883078891800} a^{13} + \frac{8842120783}{47532315567200} a^{11} - \frac{596365133}{594153944590} a^{9} + \frac{3923259251}{594153944590} a^{7} - \frac{22412302837}{1188307889180} a^{5} + \frac{7428755939}{118830788918} a^{3} + \frac{17364519196}{59415394459} a$
Class group and class number
Not computed
Unit group
| Rank: | $43$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 44 |
| The 44 conjugacy class representatives for $C_{44}$ |
| Character table for $C_{44}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.4232000.1, \(\Q(\zeta_{23})^+\), 22.22.83796671451884098775580820361328125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $44$ | R | $44$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{4}$ | $44$ | $44$ | $22^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{4}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{4}$ | $44$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{4}$ | $44$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{11}$ | $44$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||