Normalized defining polynomial
\( x^{44} - x^{43} - 67 x^{42} + 66 x^{41} + 2006 x^{40} - 1940 x^{39} - 35522 x^{38} + 33582 x^{37} + 415391 x^{36} - 381809 x^{35} - 3396482 x^{34} + 3014673 x^{33} + 20088042 x^{32} - 17073369 x^{31} - 87848856 x^{30} + 70775487 x^{29} + 288431096 x^{28} - 217655609 x^{27} - 718686410 x^{26} + 501030801 x^{25} + 1368730205 x^{24} - 867699404 x^{23} - 1999332041 x^{22} + 1131696716 x^{21} + 2238799988 x^{20} - 1107666220 x^{19} - 1911947202 x^{18} + 806431252 x^{17} + 1231950206 x^{16} - 430200535 x^{15} - 588270804 x^{14} + 164470157 x^{13} + 202516659 x^{12} - 43750410 x^{11} - 48240456 x^{10} + 7822102 x^{9} + 7480922 x^{8} - 908640 x^{7} - 688078 x^{6} + 65581 x^{5} + 31906 x^{4} - 2504 x^{3} - 504 x^{2} + 24 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $\frac{1}{139} a^{41} + \frac{25}{139} a^{40} - \frac{43}{139} a^{39} + \frac{65}{139} a^{38} - \frac{15}{139} a^{37} - \frac{57}{139} a^{36} + \frac{3}{139} a^{35} + \frac{66}{139} a^{34} - \frac{58}{139} a^{33} - \frac{5}{139} a^{32} + \frac{64}{139} a^{31} + \frac{67}{139} a^{30} + \frac{64}{139} a^{29} + \frac{41}{139} a^{28} + \frac{30}{139} a^{27} + \frac{26}{139} a^{26} + \frac{38}{139} a^{25} + \frac{14}{139} a^{24} - \frac{10}{139} a^{23} - \frac{43}{139} a^{21} - \frac{8}{139} a^{20} + \frac{57}{139} a^{19} - \frac{32}{139} a^{18} + \frac{5}{139} a^{17} - \frac{54}{139} a^{15} - \frac{40}{139} a^{14} - \frac{23}{139} a^{13} + \frac{23}{139} a^{12} - \frac{29}{139} a^{11} + \frac{19}{139} a^{10} - \frac{9}{139} a^{9} + \frac{62}{139} a^{8} + \frac{53}{139} a^{7} + \frac{24}{139} a^{6} + \frac{26}{139} a^{5} - \frac{4}{139} a^{4} - \frac{3}{139} a^{3} - \frac{65}{139} a^{2} + \frac{54}{139} a - \frac{8}{139}$, $\frac{1}{139} a^{42} + \frac{27}{139} a^{40} + \frac{28}{139} a^{39} + \frac{28}{139} a^{38} + \frac{40}{139} a^{37} + \frac{38}{139} a^{36} - \frac{9}{139} a^{35} - \frac{40}{139} a^{34} + \frac{55}{139} a^{33} + \frac{50}{139} a^{32} - \frac{4}{139} a^{31} + \frac{57}{139} a^{30} - \frac{30}{139} a^{29} - \frac{22}{139} a^{28} - \frac{29}{139} a^{27} - \frac{56}{139} a^{26} + \frac{37}{139} a^{25} + \frac{57}{139} a^{24} - \frac{28}{139} a^{23} - \frac{43}{139} a^{22} - \frac{45}{139} a^{21} - \frac{21}{139} a^{20} - \frac{67}{139} a^{19} - \frac{29}{139} a^{18} + \frac{14}{139} a^{17} - \frac{54}{139} a^{16} + \frac{59}{139} a^{15} + \frac{4}{139} a^{14} + \frac{42}{139} a^{13} - \frac{48}{139} a^{12} + \frac{49}{139} a^{11} - \frac{67}{139} a^{10} + \frac{9}{139} a^{9} + \frac{32}{139} a^{8} - \frac{50}{139} a^{7} - \frac{18}{139} a^{6} + \frac{41}{139} a^{5} - \frac{42}{139} a^{4} + \frac{10}{139} a^{3} + \frac{11}{139} a^{2} + \frac{32}{139} a + \frac{61}{139}$, $\frac{1}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{43} - \frac{845827948188354429440730587949801639534152578419209914002933360978556699203005894946723541}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{42} - \frac{9837007070721806637489122836262505883374751465201304662258389125564311271537105438516496}{5049283569677163579117885657063562738361422804138338180594722842839070505838506596941378943} a^{41} - \frac{97372738700385508966368382437706721183683781674058628615098136035821004293600328555107353128}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{40} + \frac{35408466319123262735033400491321832326435781414047721930341132085288111631901176232308694868}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{39} + \frac{1910256784497440869658569843674733266704948082645190957953041091647158817440220603809625193}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{38} - \frac{14384343485715623871627977176319455494678218793206776194652802064913424899165099517994742269}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{37} - \frac{52288139675485276513316042672850560893046184561942330471484189222305596683877460524990768988}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{36} + \frac{41054836813678109292079229903236639973524201963761212714864308299382665625366116003740368570}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{35} - \frac{20464510864988849961508848326578007487195021773236542025860595805709373552835799035970217048}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{34} + \frac{89672443547974098437144000461019277614436749949070535197856444326045124916704549914177481571}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{33} + \frac{44398303465289914699450544794312667670797869457677270438437822158651397978025851818774023579}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{32} - \frac{43336763778072443493520647460228400676349168214509237328941009768801855640543334027825305616}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{31} + \frac{35308379321048609226526723469017255891227098625062163433299429224319852244996454464508506849}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{30} - \frac{55041949850802857844063872706744015816968232103712784819051233868374735388513227843104976453}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{29} - \frac{105957764701329297337445354248934003795679054778329380567464067253080850642883796900011284192}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{28} - \frac{92682967350907597603670781998487125175834273804716744233551553956065294518192984821632578298}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{27} + \frac{116782079919726531092796449324638931422584951144127112789592261087526788215273207103236664513}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{26} - \frac{31447051823789612194875124512017942659052563888715361301066317360825588178917890938500346599}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{25} - \frac{56519990457449894547740200201099208399442690864677520644607297620990386787254665216237072689}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{24} - \frac{75784842220017330080104144860169798307948246986573711350986544725136668628481016922316961147}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{23} - \frac{93990038637050443269129848864377805459112478540726365079534647548475575030792838316518734512}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{22} - \frac{325379102149899341620917883211317569919629568654371277869904338678381173734718947848139061}{1707311710610263944018277884043075170525085408593538809265841536787311609887840360116869139} a^{21} + \frac{76913292708462631017892738853137220024457778994111968297959609231741597149978709593990718274}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{20} - \frac{84693598760290046732351046360268238404623171246520799431914684222737930140033528350720381080}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{19} + \frac{84332615223176174542685159998226314266127275697021844809899338182044629536862369423519225451}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{18} - \frac{16637717870547379628052599745304074599565528050027811592209357619593853700416414123665643221}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{17} + \frac{31133242292554042847522804043420934228636553287267837910810986556503603300838431106221402465}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{16} - \frac{114865368603423657457749344803648208347526115666808646909260051259513525466365579488549165420}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{15} - \frac{42813467385375360504060673472897634954225610986072548667970337718919356891654546297971677412}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{14} + \frac{51755651468793801095249443622352176510259847176707008509998970997005847404760107479711518003}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{13} - \frac{92813747800752121093639689460597014420202452734410527047414526732386339253027731067564038038}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{12} - \frac{93341117393346141842584641098335719340702471896189055226711721283776661299379955821000106270}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{11} - \frac{51934078459879938202882061573448119559497736167014083804931358893751841126991893972063710845}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{10} + \frac{106002624091796226019497100269734611066368918308755674948788145003742264489688849338482385929}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{9} + \frac{110661451192137779903298165095497738771255277586396769658158603951637438974684588831854846652}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{8} + \frac{15402936844927520467833811235541908675332814600276543393646057561054257879899278504093553712}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{7} + \frac{75552735514444660130679688927268945340349849882340677942076552856490688767224106051971988729}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{6} - \frac{93878136417475168210173439941329536326023307652216870661499308801274923693800688500442774043}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{5} + \frac{75807752374755017780184601550655334230832355251373470322573573668560104168734617911681064946}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{4} + \frac{110243893854618596832145728159972322424331471044619624074158129875104545707135235408539935282}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{3} + \frac{86116774695881419118798587509600929723039833119729729538092462593836692721215288192379857169}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a^{2} + \frac{88832265348859679266819550702558048892885036519341821807191388500260673329307052848259419501}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321} a + \frac{5964664815647874412497316026856807073800947997829182892868259580311998664217033782926205684}{237316327774826688218540625881987448702986871794501894487951973613436313774409810056244810321}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $43$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 4751041378621857000000000000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{22}$ (as 44T2):
An abelian group of order 44 |
The 44 conjugacy class representatives for $C_2\times C_{22}$ |
Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $22^{2}$ | R | R | $22^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | R | $22^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
5 | Data not computed | ||||||
23 | Data not computed |