Normalized defining polynomial
\(x^{44} + 61 x^{40} + 1522 x^{36} + 20041 x^{32} + 150032 x^{28} + 642172 x^{24} + 1506232 x^{20} + 1760035 x^{16} + 860639 x^{12} + 127699 x^{8} + 2926 x^{4} + 1\)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $\frac{1}{3844747107219467355553841461} a^{40} - \frac{329310562655152745086055257}{3844747107219467355553841461} a^{36} - \frac{907271928316941277326394910}{3844747107219467355553841461} a^{32} - \frac{1259912066745346167321069242}{3844747107219467355553841461} a^{28} + \frac{115350598868941151020844659}{3844747107219467355553841461} a^{24} + \frac{1169497223927233062531165844}{3844747107219467355553841461} a^{20} - \frac{290264640292738122201123587}{3844747107219467355553841461} a^{16} + \frac{1368291019434541582126756795}{3844747107219467355553841461} a^{12} + \frac{467482415138977146564746469}{3844747107219467355553841461} a^{8} - \frac{467973473429468979839811678}{3844747107219467355553841461} a^{4} + \frac{1453838531030461051742161957}{3844747107219467355553841461}$, $\frac{1}{3844747107219467355553841461} a^{41} - \frac{329310562655152745086055257}{3844747107219467355553841461} a^{37} - \frac{907271928316941277326394910}{3844747107219467355553841461} a^{33} - \frac{1259912066745346167321069242}{3844747107219467355553841461} a^{29} + \frac{115350598868941151020844659}{3844747107219467355553841461} a^{25} + \frac{1169497223927233062531165844}{3844747107219467355553841461} a^{21} - \frac{290264640292738122201123587}{3844747107219467355553841461} a^{17} + \frac{1368291019434541582126756795}{3844747107219467355553841461} a^{13} + \frac{467482415138977146564746469}{3844747107219467355553841461} a^{9} - \frac{467973473429468979839811678}{3844747107219467355553841461} a^{5} + \frac{1453838531030461051742161957}{3844747107219467355553841461} a$, $\frac{1}{3844747107219467355553841461} a^{42} - \frac{329310562655152745086055257}{3844747107219467355553841461} a^{38} - \frac{907271928316941277326394910}{3844747107219467355553841461} a^{34} - \frac{1259912066745346167321069242}{3844747107219467355553841461} a^{30} + \frac{115350598868941151020844659}{3844747107219467355553841461} a^{26} + \frac{1169497223927233062531165844}{3844747107219467355553841461} a^{22} - \frac{290264640292738122201123587}{3844747107219467355553841461} a^{18} + \frac{1368291019434541582126756795}{3844747107219467355553841461} a^{14} + \frac{467482415138977146564746469}{3844747107219467355553841461} a^{10} - \frac{467973473429468979839811678}{3844747107219467355553841461} a^{6} + \frac{1453838531030461051742161957}{3844747107219467355553841461} a^{2}$, $\frac{1}{3844747107219467355553841461} a^{43} - \frac{329310562655152745086055257}{3844747107219467355553841461} a^{39} - \frac{907271928316941277326394910}{3844747107219467355553841461} a^{35} - \frac{1259912066745346167321069242}{3844747107219467355553841461} a^{31} + \frac{115350598868941151020844659}{3844747107219467355553841461} a^{27} + \frac{1169497223927233062531165844}{3844747107219467355553841461} a^{23} - \frac{290264640292738122201123587}{3844747107219467355553841461} a^{19} + \frac{1368291019434541582126756795}{3844747107219467355553841461} a^{15} + \frac{467482415138977146564746469}{3844747107219467355553841461} a^{11} - \frac{467973473429468979839811678}{3844747107219467355553841461} a^{7} + \frac{1453838531030461051742161957}{3844747107219467355553841461} a^{3}$
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{559364217950633152513003118}{3844747107219467355553841461} a^{43} + \frac{34120009129382592888858609622}{3844747107219467355553841461} a^{39} + \frac{851278791029073106538382179100}{3844747107219467355553841461} a^{35} + \frac{11208388430103503940586671208606}{3844747107219467355553841461} a^{31} + \frac{83898538381950787425688419125632}{3844747107219467355553841461} a^{27} + \frac{359029571555533259619041645454461}{3844747107219467355553841461} a^{23} + \frac{841776480195238370324038807360508}{3844747107219467355553841461} a^{19} + \frac{982761154071312182014857524570016}{3844747107219467355553841461} a^{15} + \frac{479453552318492415604964710844738}{3844747107219467355553841461} a^{11} + \frac{70553971991710607652936942463583}{3844747107219467355553841461} a^{7} + \frac{1536643884990641141797014151784}{3844747107219467355553841461} a^{3} \) (order $8$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed ![]() | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{22}$ (as 44T2):
An abelian group of order 44 |
The 44 conjugacy class representatives for $C_2\times C_{22}$ |
Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{4}$ | $22^{2}$ | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{4}$ | $22^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
23 | Data not computed |