Properties

Label 44.0.871...125.1
Degree $44$
Signature $[0, 22]$
Discriminant $8.717\times 10^{104}$
Root discriminant \(242.67\)
Ramified primes $5,89$
Class number not computed
Class group not computed
Galois group $C_{44}$ (as 44T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 51*x^42 - 72*x^41 + 566*x^40 - 1823*x^39 - 5918*x^38 - 45125*x^37 - 70986*x^36 - 787423*x^35 + 1395410*x^34 - 4810706*x^33 + 37399445*x^32 + 29260373*x^31 + 375413539*x^30 + 909313260*x^29 + 3601349272*x^28 + 9707422020*x^27 + 35858044676*x^26 + 80077822563*x^25 + 277668691290*x^24 + 492457350409*x^23 + 1092266982960*x^22 + 1107399939239*x^21 + 157000941256*x^20 - 9216585343466*x^19 - 16909433110831*x^18 - 59439662561311*x^17 - 75357535508658*x^16 - 40783961230241*x^15 + 32168228576932*x^14 + 318894457174819*x^13 + 1102130569859740*x^12 + 1681541590786119*x^11 + 3468079685863132*x^10 + 4330512451618829*x^9 + 5069938300794264*x^8 + 4580288104276687*x^7 + 3696697839845676*x^6 + 2158154130607707*x^5 + 1280592983792440*x^4 + 453685166118276*x^3 + 195105349023168*x^2 + 33768235858932*x + 9380892213701)
 
gp: K = bnfinit(y^44 - y^43 + 51*y^42 - 72*y^41 + 566*y^40 - 1823*y^39 - 5918*y^38 - 45125*y^37 - 70986*y^36 - 787423*y^35 + 1395410*y^34 - 4810706*y^33 + 37399445*y^32 + 29260373*y^31 + 375413539*y^30 + 909313260*y^29 + 3601349272*y^28 + 9707422020*y^27 + 35858044676*y^26 + 80077822563*y^25 + 277668691290*y^24 + 492457350409*y^23 + 1092266982960*y^22 + 1107399939239*y^21 + 157000941256*y^20 - 9216585343466*y^19 - 16909433110831*y^18 - 59439662561311*y^17 - 75357535508658*y^16 - 40783961230241*y^15 + 32168228576932*y^14 + 318894457174819*y^13 + 1102130569859740*y^12 + 1681541590786119*y^11 + 3468079685863132*y^10 + 4330512451618829*y^9 + 5069938300794264*y^8 + 4580288104276687*y^7 + 3696697839845676*y^6 + 2158154130607707*y^5 + 1280592983792440*y^4 + 453685166118276*y^3 + 195105349023168*y^2 + 33768235858932*y + 9380892213701, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 - x^43 + 51*x^42 - 72*x^41 + 566*x^40 - 1823*x^39 - 5918*x^38 - 45125*x^37 - 70986*x^36 - 787423*x^35 + 1395410*x^34 - 4810706*x^33 + 37399445*x^32 + 29260373*x^31 + 375413539*x^30 + 909313260*x^29 + 3601349272*x^28 + 9707422020*x^27 + 35858044676*x^26 + 80077822563*x^25 + 277668691290*x^24 + 492457350409*x^23 + 1092266982960*x^22 + 1107399939239*x^21 + 157000941256*x^20 - 9216585343466*x^19 - 16909433110831*x^18 - 59439662561311*x^17 - 75357535508658*x^16 - 40783961230241*x^15 + 32168228576932*x^14 + 318894457174819*x^13 + 1102130569859740*x^12 + 1681541590786119*x^11 + 3468079685863132*x^10 + 4330512451618829*x^9 + 5069938300794264*x^8 + 4580288104276687*x^7 + 3696697839845676*x^6 + 2158154130607707*x^5 + 1280592983792440*x^4 + 453685166118276*x^3 + 195105349023168*x^2 + 33768235858932*x + 9380892213701);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 + 51*x^42 - 72*x^41 + 566*x^40 - 1823*x^39 - 5918*x^38 - 45125*x^37 - 70986*x^36 - 787423*x^35 + 1395410*x^34 - 4810706*x^33 + 37399445*x^32 + 29260373*x^31 + 375413539*x^30 + 909313260*x^29 + 3601349272*x^28 + 9707422020*x^27 + 35858044676*x^26 + 80077822563*x^25 + 277668691290*x^24 + 492457350409*x^23 + 1092266982960*x^22 + 1107399939239*x^21 + 157000941256*x^20 - 9216585343466*x^19 - 16909433110831*x^18 - 59439662561311*x^17 - 75357535508658*x^16 - 40783961230241*x^15 + 32168228576932*x^14 + 318894457174819*x^13 + 1102130569859740*x^12 + 1681541590786119*x^11 + 3468079685863132*x^10 + 4330512451618829*x^9 + 5069938300794264*x^8 + 4580288104276687*x^7 + 3696697839845676*x^6 + 2158154130607707*x^5 + 1280592983792440*x^4 + 453685166118276*x^3 + 195105349023168*x^2 + 33768235858932*x + 9380892213701)
 

\( x^{44} - x^{43} + 51 x^{42} - 72 x^{41} + 566 x^{40} - 1823 x^{39} - 5918 x^{38} - 45125 x^{37} + \cdots + 9380892213701 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(871\!\cdots\!125\) \(\medspace = 5^{33}\cdot 89^{42}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(242.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}89^{21/22}\approx 242.6659674557602$
Ramified primes:   \(5\), \(89\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(445=5\cdot 89\)
Dirichlet character group:    $\lbrace$$\chi_{445}(256,·)$, $\chi_{445}(1,·)$, $\chi_{445}(4,·)$, $\chi_{445}(133,·)$, $\chi_{445}(134,·)$, $\chi_{445}(263,·)$, $\chi_{445}(269,·)$, $\chi_{445}(271,·)$, $\chi_{445}(16,·)$, $\chi_{445}(401,·)$, $\chi_{445}(22,·)$, $\chi_{445}(156,·)$, $\chi_{445}(413,·)$, $\chi_{445}(278,·)$, $\chi_{445}(292,·)$, $\chi_{445}(39,·)$, $\chi_{445}(299,·)$, $\chi_{445}(434,·)$, $\chi_{445}(177,·)$, $\chi_{445}(306,·)$, $\chi_{445}(179,·)$, $\chi_{445}(437,·)$, $\chi_{445}(57,·)$, $\chi_{445}(186,·)$, $\chi_{445}(443,·)$, $\chi_{445}(317,·)$, $\chi_{445}(64,·)$, $\chi_{445}(194,·)$, $\chi_{445}(203,·)$, $\chi_{445}(73,·)$, $\chi_{445}(331,·)$, $\chi_{445}(162,·)$, $\chi_{445}(334,·)$, $\chi_{445}(87,·)$, $\chi_{445}(88,·)$, $\chi_{445}(91,·)$, $\chi_{445}(348,·)$, $\chi_{445}(222,·)$, $\chi_{445}(352,·)$, $\chi_{445}(228,·)$, $\chi_{445}(364,·)$, $\chi_{445}(367,·)$, $\chi_{445}(121,·)$, $\chi_{445}(378,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $\frac{1}{210263330603}a^{42}+\frac{86374319650}{210263330603}a^{41}+\frac{58402938669}{210263330603}a^{40}-\frac{103027668576}{210263330603}a^{39}-\frac{62382945342}{210263330603}a^{38}+\frac{4767334415}{210263330603}a^{37}-\frac{75650898133}{210263330603}a^{36}+\frac{82562465189}{210263330603}a^{35}-\frac{53232215545}{210263330603}a^{34}-\frac{102482714472}{210263330603}a^{33}+\frac{28957602617}{210263330603}a^{32}+\frac{104820047174}{210263330603}a^{31}+\frac{5738319175}{210263330603}a^{30}+\frac{23238614055}{210263330603}a^{29}+\frac{52980079450}{210263330603}a^{28}+\frac{31200190187}{210263330603}a^{27}+\frac{71235850674}{210263330603}a^{26}-\frac{95753142401}{210263330603}a^{25}+\frac{75609993357}{210263330603}a^{24}-\frac{46193821326}{210263330603}a^{23}-\frac{101215507307}{210263330603}a^{22}-\frac{58768359090}{210263330603}a^{21}-\frac{15629409434}{210263330603}a^{20}+\frac{6713434155}{210263330603}a^{19}-\frac{102356883470}{210263330603}a^{18}-\frac{80021844649}{210263330603}a^{17}-\frac{71500365357}{210263330603}a^{16}-\frac{46136863854}{210263330603}a^{15}-\frac{98685967407}{210263330603}a^{14}-\frac{11514720379}{210263330603}a^{13}+\frac{95607792270}{210263330603}a^{12}+\frac{39065077242}{210263330603}a^{11}-\frac{31123888088}{210263330603}a^{10}-\frac{96148531684}{210263330603}a^{9}-\frac{22271477098}{210263330603}a^{8}+\frac{76154887550}{210263330603}a^{7}+\frac{103282392914}{210263330603}a^{6}+\frac{87595562806}{210263330603}a^{5}-\frac{2405980949}{5682792719}a^{4}-\frac{20120505834}{210263330603}a^{3}-\frac{69565839262}{210263330603}a^{2}+\frac{77421794523}{210263330603}a-\frac{49988316487}{210263330603}$, $\frac{1}{23\!\cdots\!33}a^{43}-\frac{37\!\cdots\!50}{23\!\cdots\!33}a^{42}-\frac{93\!\cdots\!46}{23\!\cdots\!33}a^{41}-\frac{68\!\cdots\!06}{23\!\cdots\!33}a^{40}-\frac{74\!\cdots\!55}{23\!\cdots\!33}a^{39}-\frac{65\!\cdots\!40}{23\!\cdots\!33}a^{38}-\frac{21\!\cdots\!28}{23\!\cdots\!33}a^{37}+\frac{20\!\cdots\!09}{63\!\cdots\!09}a^{36}-\frac{80\!\cdots\!87}{23\!\cdots\!33}a^{35}-\frac{90\!\cdots\!06}{23\!\cdots\!33}a^{34}+\frac{49\!\cdots\!24}{23\!\cdots\!33}a^{33}-\frac{10\!\cdots\!68}{23\!\cdots\!33}a^{32}-\frac{68\!\cdots\!03}{23\!\cdots\!33}a^{31}-\frac{10\!\cdots\!01}{23\!\cdots\!33}a^{30}+\frac{68\!\cdots\!62}{23\!\cdots\!33}a^{29}-\frac{58\!\cdots\!37}{23\!\cdots\!33}a^{28}+\frac{49\!\cdots\!54}{23\!\cdots\!33}a^{27}-\frac{68\!\cdots\!69}{23\!\cdots\!33}a^{26}+\frac{79\!\cdots\!41}{23\!\cdots\!33}a^{25}-\frac{33\!\cdots\!68}{23\!\cdots\!33}a^{24}+\frac{10\!\cdots\!10}{23\!\cdots\!33}a^{23}+\frac{69\!\cdots\!08}{23\!\cdots\!33}a^{22}+\frac{94\!\cdots\!62}{23\!\cdots\!33}a^{21}-\frac{10\!\cdots\!12}{23\!\cdots\!33}a^{20}-\frac{38\!\cdots\!81}{23\!\cdots\!33}a^{19}+\frac{57\!\cdots\!91}{23\!\cdots\!33}a^{18}+\frac{14\!\cdots\!21}{23\!\cdots\!33}a^{17}+\frac{92\!\cdots\!82}{23\!\cdots\!33}a^{16}+\frac{35\!\cdots\!26}{23\!\cdots\!33}a^{15}-\frac{47\!\cdots\!32}{23\!\cdots\!33}a^{14}+\frac{40\!\cdots\!89}{23\!\cdots\!33}a^{13}+\frac{54\!\cdots\!53}{23\!\cdots\!33}a^{12}-\frac{14\!\cdots\!57}{23\!\cdots\!33}a^{11}-\frac{55\!\cdots\!59}{23\!\cdots\!33}a^{10}+\frac{87\!\cdots\!74}{23\!\cdots\!33}a^{9}-\frac{15\!\cdots\!07}{23\!\cdots\!33}a^{8}-\frac{10\!\cdots\!17}{23\!\cdots\!33}a^{7}+\frac{12\!\cdots\!33}{63\!\cdots\!09}a^{6}-\frac{40\!\cdots\!48}{23\!\cdots\!33}a^{5}-\frac{55\!\cdots\!58}{23\!\cdots\!33}a^{4}+\frac{38\!\cdots\!35}{23\!\cdots\!33}a^{3}+\frac{17\!\cdots\!65}{23\!\cdots\!33}a^{2}-\frac{50\!\cdots\!05}{23\!\cdots\!33}a+\frac{70\!\cdots\!50}{23\!\cdots\!33}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 51*x^42 - 72*x^41 + 566*x^40 - 1823*x^39 - 5918*x^38 - 45125*x^37 - 70986*x^36 - 787423*x^35 + 1395410*x^34 - 4810706*x^33 + 37399445*x^32 + 29260373*x^31 + 375413539*x^30 + 909313260*x^29 + 3601349272*x^28 + 9707422020*x^27 + 35858044676*x^26 + 80077822563*x^25 + 277668691290*x^24 + 492457350409*x^23 + 1092266982960*x^22 + 1107399939239*x^21 + 157000941256*x^20 - 9216585343466*x^19 - 16909433110831*x^18 - 59439662561311*x^17 - 75357535508658*x^16 - 40783961230241*x^15 + 32168228576932*x^14 + 318894457174819*x^13 + 1102130569859740*x^12 + 1681541590786119*x^11 + 3468079685863132*x^10 + 4330512451618829*x^9 + 5069938300794264*x^8 + 4580288104276687*x^7 + 3696697839845676*x^6 + 2158154130607707*x^5 + 1280592983792440*x^4 + 453685166118276*x^3 + 195105349023168*x^2 + 33768235858932*x + 9380892213701)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 - x^43 + 51*x^42 - 72*x^41 + 566*x^40 - 1823*x^39 - 5918*x^38 - 45125*x^37 - 70986*x^36 - 787423*x^35 + 1395410*x^34 - 4810706*x^33 + 37399445*x^32 + 29260373*x^31 + 375413539*x^30 + 909313260*x^29 + 3601349272*x^28 + 9707422020*x^27 + 35858044676*x^26 + 80077822563*x^25 + 277668691290*x^24 + 492457350409*x^23 + 1092266982960*x^22 + 1107399939239*x^21 + 157000941256*x^20 - 9216585343466*x^19 - 16909433110831*x^18 - 59439662561311*x^17 - 75357535508658*x^16 - 40783961230241*x^15 + 32168228576932*x^14 + 318894457174819*x^13 + 1102130569859740*x^12 + 1681541590786119*x^11 + 3468079685863132*x^10 + 4330512451618829*x^9 + 5069938300794264*x^8 + 4580288104276687*x^7 + 3696697839845676*x^6 + 2158154130607707*x^5 + 1280592983792440*x^4 + 453685166118276*x^3 + 195105349023168*x^2 + 33768235858932*x + 9380892213701, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 - x^43 + 51*x^42 - 72*x^41 + 566*x^40 - 1823*x^39 - 5918*x^38 - 45125*x^37 - 70986*x^36 - 787423*x^35 + 1395410*x^34 - 4810706*x^33 + 37399445*x^32 + 29260373*x^31 + 375413539*x^30 + 909313260*x^29 + 3601349272*x^28 + 9707422020*x^27 + 35858044676*x^26 + 80077822563*x^25 + 277668691290*x^24 + 492457350409*x^23 + 1092266982960*x^22 + 1107399939239*x^21 + 157000941256*x^20 - 9216585343466*x^19 - 16909433110831*x^18 - 59439662561311*x^17 - 75357535508658*x^16 - 40783961230241*x^15 + 32168228576932*x^14 + 318894457174819*x^13 + 1102130569859740*x^12 + 1681541590786119*x^11 + 3468079685863132*x^10 + 4330512451618829*x^9 + 5069938300794264*x^8 + 4580288104276687*x^7 + 3696697839845676*x^6 + 2158154130607707*x^5 + 1280592983792440*x^4 + 453685166118276*x^3 + 195105349023168*x^2 + 33768235858932*x + 9380892213701);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 + 51*x^42 - 72*x^41 + 566*x^40 - 1823*x^39 - 5918*x^38 - 45125*x^37 - 70986*x^36 - 787423*x^35 + 1395410*x^34 - 4810706*x^33 + 37399445*x^32 + 29260373*x^31 + 375413539*x^30 + 909313260*x^29 + 3601349272*x^28 + 9707422020*x^27 + 35858044676*x^26 + 80077822563*x^25 + 277668691290*x^24 + 492457350409*x^23 + 1092266982960*x^22 + 1107399939239*x^21 + 157000941256*x^20 - 9216585343466*x^19 - 16909433110831*x^18 - 59439662561311*x^17 - 75357535508658*x^16 - 40783961230241*x^15 + 32168228576932*x^14 + 318894457174819*x^13 + 1102130569859740*x^12 + 1681541590786119*x^11 + 3468079685863132*x^10 + 4330512451618829*x^9 + 5069938300794264*x^8 + 4580288104276687*x^7 + 3696697839845676*x^6 + 2158154130607707*x^5 + 1280592983792440*x^4 + 453685166118276*x^3 + 195105349023168*x^2 + 33768235858932*x + 9380892213701);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{44}$ (as 44T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 44
The 44 conjugacy class representatives for $C_{44}$
Character table for $C_{44}$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.990125.2, 11.11.31181719929966183601.1, 22.22.47475569228068862203841937471134830429736328125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $44$ $44$ R $44$ ${\href{/padicField/11.11.0.1}{11} }^{4}$ $44$ $44$ ${\href{/padicField/19.11.0.1}{11} }^{4}$ $44$ ${\href{/padicField/29.11.0.1}{11} }^{4}$ $22^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{11}$ $22^{2}$ $44$ $44$ $44$ ${\href{/padicField/59.11.0.1}{11} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $44$$4$$11$$33$
\(89\) Copy content Toggle raw display 89.22.21.17$x^{22} + 1068$$22$$1$$21$22T1$[\ ]_{22}$
89.22.21.17$x^{22} + 1068$$22$$1$$21$22T1$[\ ]_{22}$