Normalized defining polynomial
\( x^{44} + 23 x^{42} + 299 x^{40} + 2668 x^{38} + 18055 x^{36} + 96646 x^{34} + 421245 x^{32} + 1516689 x^{30} + 4557519 x^{28} + 11467961 x^{26} + 24199128 x^{24} + 42662286 x^{22} + 62532561 x^{20} + 75392022 x^{18} + 73935156 x^{16} + 57768387 x^{14} + 35301228 x^{12} + 16195335 x^{10} + 5446584 x^{8} + 1210352 x^{6} + 180389 x^{4} + 11638 x^{2} + 529 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{23} a^{22}$, $\frac{1}{23} a^{23}$, $\frac{1}{23} a^{24}$, $\frac{1}{23} a^{25}$, $\frac{1}{23} a^{26}$, $\frac{1}{23} a^{27}$, $\frac{1}{23} a^{28}$, $\frac{1}{23} a^{29}$, $\frac{1}{23} a^{30}$, $\frac{1}{23} a^{31}$, $\frac{1}{23} a^{32}$, $\frac{1}{23} a^{33}$, $\frac{1}{23} a^{34}$, $\frac{1}{23} a^{35}$, $\frac{1}{23} a^{36}$, $\frac{1}{23} a^{37}$, $\frac{1}{23} a^{38}$, $\frac{1}{23} a^{39}$, $\frac{1}{24556157} a^{40} + \frac{305889}{24556157} a^{38} - \frac{203316}{24556157} a^{36} - \frac{15232}{24556157} a^{34} + \frac{423632}{24556157} a^{32} - \frac{263735}{24556157} a^{30} - \frac{17058}{1067659} a^{28} + \frac{79693}{24556157} a^{26} + \frac{384404}{24556157} a^{24} + \frac{210138}{24556157} a^{22} + \frac{392320}{1067659} a^{20} - \frac{491477}{1067659} a^{18} + \frac{460291}{1067659} a^{16} + \frac{409417}{1067659} a^{14} - \frac{360327}{1067659} a^{12} + \frac{372646}{1067659} a^{10} - \frac{195531}{1067659} a^{8} + \frac{255097}{1067659} a^{6} + \frac{12929}{1067659} a^{4} + \frac{446170}{1067659} a^{2} + \frac{55697}{1067659}$, $\frac{1}{24556157} a^{41} + \frac{305889}{24556157} a^{39} - \frac{203316}{24556157} a^{37} - \frac{15232}{24556157} a^{35} + \frac{423632}{24556157} a^{33} - \frac{263735}{24556157} a^{31} - \frac{17058}{1067659} a^{29} + \frac{79693}{24556157} a^{27} + \frac{384404}{24556157} a^{25} + \frac{210138}{24556157} a^{23} + \frac{392320}{1067659} a^{21} - \frac{491477}{1067659} a^{19} + \frac{460291}{1067659} a^{17} + \frac{409417}{1067659} a^{15} - \frac{360327}{1067659} a^{13} + \frac{372646}{1067659} a^{11} - \frac{195531}{1067659} a^{9} + \frac{255097}{1067659} a^{7} + \frac{12929}{1067659} a^{5} + \frac{446170}{1067659} a^{3} + \frac{55697}{1067659} a$, $\frac{1}{636968065704100522440858389810697591023} a^{42} + \frac{5755636131279205685327418474843}{636968065704100522440858389810697591023} a^{40} - \frac{2766808978853660638281687333283189226}{636968065704100522440858389810697591023} a^{38} + \frac{8420125655964967570434335740564366516}{636968065704100522440858389810697591023} a^{36} + \frac{5363834181750727225775342499545938237}{636968065704100522440858389810697591023} a^{34} - \frac{5011363664417770982567818120174250979}{636968065704100522440858389810697591023} a^{32} + \frac{6462774396101919123854667907489977390}{636968065704100522440858389810697591023} a^{30} + \frac{1361369016049795655998233811816501799}{636968065704100522440858389810697591023} a^{28} + \frac{13749647834678826284671003425575098586}{636968065704100522440858389810697591023} a^{26} + \frac{9151572527542995230221480787613417001}{636968065704100522440858389810697591023} a^{24} + \frac{11197155162359815775484628671272258602}{636968065704100522440858389810697591023} a^{22} - \frac{13338061847948670589198734037381162771}{27694263726265240106124277817856417001} a^{20} + \frac{6650709677926776184583509957164195314}{27694263726265240106124277817856417001} a^{18} - \frac{6820424214318991627456015401316240546}{27694263726265240106124277817856417001} a^{16} + \frac{10544871495508316610122098060856487900}{27694263726265240106124277817856417001} a^{14} - \frac{1169895739344639205339676515850645904}{27694263726265240106124277817856417001} a^{12} - \frac{91687202865078033400874710337434905}{27694263726265240106124277817856417001} a^{10} - \frac{1264766535778439148738828954779831460}{27694263726265240106124277817856417001} a^{8} + \frac{406874121304761360307825622872948776}{27694263726265240106124277817856417001} a^{6} - \frac{3615734122086171837070622535576165639}{27694263726265240106124277817856417001} a^{4} - \frac{1644145403094707030709335232608519251}{27694263726265240106124277817856417001} a^{2} - \frac{2178959152626519883114055851297237383}{27694263726265240106124277817856417001}$, $\frac{1}{636968065704100522440858389810697591023} a^{43} + \frac{5755636131279205685327418474843}{636968065704100522440858389810697591023} a^{41} - \frac{2766808978853660638281687333283189226}{636968065704100522440858389810697591023} a^{39} + \frac{8420125655964967570434335740564366516}{636968065704100522440858389810697591023} a^{37} + \frac{5363834181750727225775342499545938237}{636968065704100522440858389810697591023} a^{35} - \frac{5011363664417770982567818120174250979}{636968065704100522440858389810697591023} a^{33} + \frac{6462774396101919123854667907489977390}{636968065704100522440858389810697591023} a^{31} + \frac{1361369016049795655998233811816501799}{636968065704100522440858389810697591023} a^{29} + \frac{13749647834678826284671003425575098586}{636968065704100522440858389810697591023} a^{27} + \frac{9151572527542995230221480787613417001}{636968065704100522440858389810697591023} a^{25} + \frac{11197155162359815775484628671272258602}{636968065704100522440858389810697591023} a^{23} - \frac{13338061847948670589198734037381162771}{27694263726265240106124277817856417001} a^{21} + \frac{6650709677926776184583509957164195314}{27694263726265240106124277817856417001} a^{19} - \frac{6820424214318991627456015401316240546}{27694263726265240106124277817856417001} a^{17} + \frac{10544871495508316610122098060856487900}{27694263726265240106124277817856417001} a^{15} - \frac{1169895739344639205339676515850645904}{27694263726265240106124277817856417001} a^{13} - \frac{91687202865078033400874710337434905}{27694263726265240106124277817856417001} a^{11} - \frac{1264766535778439148738828954779831460}{27694263726265240106124277817856417001} a^{9} + \frac{406874121304761360307825622872948776}{27694263726265240106124277817856417001} a^{7} - \frac{3615734122086171837070622535576165639}{27694263726265240106124277817856417001} a^{5} - \frac{1644145403094707030709335232608519251}{27694263726265240106124277817856417001} a^{3} - \frac{2178959152626519883114055851297237383}{27694263726265240106124277817856417001} a$
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{122886834586606027611739775648793658}{636968065704100522440858389810697591023} a^{42} - \frac{2811939192352668411885229675135639801}{636968065704100522440858389810697591023} a^{40} - \frac{36414697296856284759939776538503707259}{636968065704100522440858389810697591023} a^{38} - \frac{323631039610506013057573865960345462816}{636968065704100522440858389810697591023} a^{36} - \frac{94840309042035377828763732789936159253}{27694263726265240106124277817856417001} a^{34} - \frac{11625862554251792319858035429465402898456}{636968065704100522440858389810697591023} a^{32} - \frac{50437469985103885077225421117261836876234}{636968065704100522440858389810697591023} a^{30} - \frac{180656467729518231288054018432112012295220}{636968065704100522440858389810697591023} a^{28} - \frac{539700580015441526193324798291357128560367}{636968065704100522440858389810697591023} a^{26} - \frac{1348925463646387817733501972052698954948762}{636968065704100522440858389810697591023} a^{24} - \frac{2824335798154840894937367872769089973737085}{636968065704100522440858389810697591023} a^{22} - \frac{214483121678187214802353819142117544539397}{27694263726265240106124277817856417001} a^{20} - \frac{310899250664862701002677708578524574741901}{27694263726265240106124277817856417001} a^{18} - \frac{369687660510746256879893799985492355417343}{27694263726265240106124277817856417001} a^{16} - \frac{356393319410208792238368353696847232360374}{27694263726265240106124277817856417001} a^{14} - \frac{272294467684043844839338109120170952735511}{27694263726265240106124277817856417001} a^{12} - \frac{161725619685950643130152670201485133448169}{27694263726265240106124277817856417001} a^{10} - \frac{71231131240740897059214689752582901822260}{27694263726265240106124277817856417001} a^{8} - \frac{22806403126614556303212626774792213774456}{27694263726265240106124277817856417001} a^{6} - \frac{4627967503254677839370131558107172115801}{27694263726265240106124277817856417001} a^{4} - \frac{692427001424194557692742582610301257789}{27694263726265240106124277817856417001} a^{2} - \frac{16470264746805560920516187670108347434}{27694263726265240106124277817856417001} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{22}$ (as 44T2):
An abelian group of order 44 |
The 44 conjugacy class representatives for $C_2\times C_{22}$ |
Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | $22^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{4}$ | $22^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{4}$ | $22^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{4}$ | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
3 | Data not computed | ||||||
23 | Data not computed |