Properties

Label 44.0.775...125.1
Degree $44$
Signature $[0, 22]$
Discriminant $7.759\times 10^{106}$
Root discriminant \(268.73\)
Ramified primes $5,89$
Class number not computed
Class group not computed
Galois group $C_{44}$ (as 44T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 46*x^42 - 47*x^41 + 861*x^40 - 2333*x^39 + 12302*x^38 - 63990*x^37 + 133754*x^36 - 1021468*x^35 + 1930750*x^34 - 10014031*x^33 + 34478590*x^32 - 55120652*x^31 + 488448869*x^30 - 4801625*x^29 + 3550403737*x^28 - 3384252805*x^27 + 5825255746*x^26 - 28254892927*x^25 + 51190951460*x^24 - 144055141516*x^23 + 209880892930*x^22 - 3322585528251*x^21 + 9644185539226*x^20 - 31781584647001*x^19 + 93774885990329*x^18 - 268079177298866*x^17 + 734100939620087*x^16 - 1518218568490401*x^15 + 3168243981907192*x^14 - 5634610133492386*x^13 + 11148716367452975*x^12 - 19690479891452526*x^11 + 33905835107525892*x^10 - 49091119860089206*x^9 + 64926814287050439*x^8 - 72968813297711373*x^7 + 76402710809874371*x^6 - 68958090177933733*x^5 + 57707011951741390*x^4 - 39468700453637824*x^3 + 23684548337191503*x^2 - 9522126521026368*x + 3033550844805431)
 
gp: K = bnfinit(y^44 - y^43 + 46*y^42 - 47*y^41 + 861*y^40 - 2333*y^39 + 12302*y^38 - 63990*y^37 + 133754*y^36 - 1021468*y^35 + 1930750*y^34 - 10014031*y^33 + 34478590*y^32 - 55120652*y^31 + 488448869*y^30 - 4801625*y^29 + 3550403737*y^28 - 3384252805*y^27 + 5825255746*y^26 - 28254892927*y^25 + 51190951460*y^24 - 144055141516*y^23 + 209880892930*y^22 - 3322585528251*y^21 + 9644185539226*y^20 - 31781584647001*y^19 + 93774885990329*y^18 - 268079177298866*y^17 + 734100939620087*y^16 - 1518218568490401*y^15 + 3168243981907192*y^14 - 5634610133492386*y^13 + 11148716367452975*y^12 - 19690479891452526*y^11 + 33905835107525892*y^10 - 49091119860089206*y^9 + 64926814287050439*y^8 - 72968813297711373*y^7 + 76402710809874371*y^6 - 68958090177933733*y^5 + 57707011951741390*y^4 - 39468700453637824*y^3 + 23684548337191503*y^2 - 9522126521026368*y + 3033550844805431, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 - x^43 + 46*x^42 - 47*x^41 + 861*x^40 - 2333*x^39 + 12302*x^38 - 63990*x^37 + 133754*x^36 - 1021468*x^35 + 1930750*x^34 - 10014031*x^33 + 34478590*x^32 - 55120652*x^31 + 488448869*x^30 - 4801625*x^29 + 3550403737*x^28 - 3384252805*x^27 + 5825255746*x^26 - 28254892927*x^25 + 51190951460*x^24 - 144055141516*x^23 + 209880892930*x^22 - 3322585528251*x^21 + 9644185539226*x^20 - 31781584647001*x^19 + 93774885990329*x^18 - 268079177298866*x^17 + 734100939620087*x^16 - 1518218568490401*x^15 + 3168243981907192*x^14 - 5634610133492386*x^13 + 11148716367452975*x^12 - 19690479891452526*x^11 + 33905835107525892*x^10 - 49091119860089206*x^9 + 64926814287050439*x^8 - 72968813297711373*x^7 + 76402710809874371*x^6 - 68958090177933733*x^5 + 57707011951741390*x^4 - 39468700453637824*x^3 + 23684548337191503*x^2 - 9522126521026368*x + 3033550844805431);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 + 46*x^42 - 47*x^41 + 861*x^40 - 2333*x^39 + 12302*x^38 - 63990*x^37 + 133754*x^36 - 1021468*x^35 + 1930750*x^34 - 10014031*x^33 + 34478590*x^32 - 55120652*x^31 + 488448869*x^30 - 4801625*x^29 + 3550403737*x^28 - 3384252805*x^27 + 5825255746*x^26 - 28254892927*x^25 + 51190951460*x^24 - 144055141516*x^23 + 209880892930*x^22 - 3322585528251*x^21 + 9644185539226*x^20 - 31781584647001*x^19 + 93774885990329*x^18 - 268079177298866*x^17 + 734100939620087*x^16 - 1518218568490401*x^15 + 3168243981907192*x^14 - 5634610133492386*x^13 + 11148716367452975*x^12 - 19690479891452526*x^11 + 33905835107525892*x^10 - 49091119860089206*x^9 + 64926814287050439*x^8 - 72968813297711373*x^7 + 76402710809874371*x^6 - 68958090177933733*x^5 + 57707011951741390*x^4 - 39468700453637824*x^3 + 23684548337191503*x^2 - 9522126521026368*x + 3033550844805431)
 

\( x^{44} - x^{43} + 46 x^{42} - 47 x^{41} + 861 x^{40} - 2333 x^{39} + 12302 x^{38} + \cdots + 30\!\cdots\!31 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(775\!\cdots\!125\) \(\medspace = 5^{33}\cdot 89^{43}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(268.73\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}89^{43/44}\approx 268.72816808491586$
Ramified primes:   \(5\), \(89\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{445}) \)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(445=5\cdot 89\)
Dirichlet character group:    $\lbrace$$\chi_{445}(256,·)$, $\chi_{445}(1,·)$, $\chi_{445}(258,·)$, $\chi_{445}(259,·)$, $\chi_{445}(262,·)$, $\chi_{445}(257,·)$, $\chi_{445}(392,·)$, $\chi_{445}(139,·)$, $\chi_{445}(271,·)$, $\chi_{445}(16,·)$, $\chi_{445}(401,·)$, $\chi_{445}(403,·)$, $\chi_{445}(68,·)$, $\chi_{445}(156,·)$, $\chi_{445}(289,·)$, $\chi_{445}(42,·)$, $\chi_{445}(44,·)$, $\chi_{445}(429,·)$, $\chi_{445}(174,·)$, $\chi_{445}(306,·)$, $\chi_{445}(53,·)$, $\chi_{445}(183,·)$, $\chi_{445}(186,·)$, $\chi_{445}(187,·)$, $\chi_{445}(188,·)$, $\chi_{445}(189,·)$, $\chi_{445}(322,·)$, $\chi_{445}(324,·)$, $\chi_{445}(198,·)$, $\chi_{445}(72,·)$, $\chi_{445}(331,·)$, $\chi_{445}(338,·)$, $\chi_{445}(121,·)$, $\chi_{445}(218,·)$, $\chi_{445}(91,·)$, $\chi_{445}(354,·)$, $\chi_{445}(227,·)$, $\chi_{445}(444,·)$, $\chi_{445}(107,·)$, $\chi_{445}(114,·)$, $\chi_{445}(373,·)$, $\chi_{445}(247,·)$, $\chi_{445}(377,·)$, $\chi_{445}(123,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $\frac{1}{16909}a^{42}+\frac{6424}{16909}a^{41}+\frac{6322}{16909}a^{40}-\frac{4786}{16909}a^{39}+\frac{1899}{16909}a^{38}-\frac{5232}{16909}a^{37}-\frac{5580}{16909}a^{36}+\frac{427}{16909}a^{35}+\frac{11}{37}a^{34}+\frac{1797}{16909}a^{33}-\frac{4568}{16909}a^{32}+\frac{2044}{16909}a^{31}-\frac{7930}{16909}a^{30}+\frac{8184}{16909}a^{29}-\frac{7441}{16909}a^{28}+\frac{580}{16909}a^{27}+\frac{6777}{16909}a^{26}+\frac{4308}{16909}a^{25}-\frac{5732}{16909}a^{24}+\frac{2087}{16909}a^{23}-\frac{2498}{16909}a^{22}+\frac{2001}{16909}a^{21}-\frac{1063}{16909}a^{20}-\frac{1593}{16909}a^{19}+\frac{5219}{16909}a^{18}+\frac{5611}{16909}a^{17}-\frac{1888}{16909}a^{16}+\frac{6534}{16909}a^{15}+\frac{3315}{16909}a^{14}+\frac{6156}{16909}a^{13}-\frac{668}{16909}a^{12}+\frac{3421}{16909}a^{11}-\frac{4338}{16909}a^{10}+\frac{8010}{16909}a^{9}-\frac{8308}{16909}a^{8}-\frac{5570}{16909}a^{7}-\frac{1269}{16909}a^{6}-\frac{3981}{16909}a^{5}-\frac{4269}{16909}a^{4}-\frac{5051}{16909}a^{3}-\frac{997}{16909}a^{2}+\frac{96}{16909}a+\frac{276}{16909}$, $\frac{1}{56\!\cdots\!21}a^{43}-\frac{71\!\cdots\!95}{56\!\cdots\!21}a^{42}+\frac{13\!\cdots\!26}{56\!\cdots\!21}a^{41}+\frac{16\!\cdots\!42}{56\!\cdots\!21}a^{40}+\frac{23\!\cdots\!64}{56\!\cdots\!21}a^{39}-\frac{13\!\cdots\!60}{56\!\cdots\!21}a^{38}-\frac{65\!\cdots\!12}{15\!\cdots\!33}a^{37}-\frac{25\!\cdots\!18}{56\!\cdots\!21}a^{36}+\frac{17\!\cdots\!45}{56\!\cdots\!21}a^{35}-\frac{10\!\cdots\!23}{56\!\cdots\!21}a^{34}+\frac{16\!\cdots\!98}{56\!\cdots\!21}a^{33}+\frac{43\!\cdots\!49}{56\!\cdots\!21}a^{32}-\frac{21\!\cdots\!99}{56\!\cdots\!21}a^{31}+\frac{22\!\cdots\!47}{56\!\cdots\!21}a^{30}-\frac{51\!\cdots\!52}{56\!\cdots\!21}a^{29}-\frac{57\!\cdots\!04}{56\!\cdots\!21}a^{28}-\frac{47\!\cdots\!16}{56\!\cdots\!21}a^{27}+\frac{31\!\cdots\!75}{56\!\cdots\!21}a^{26}-\frac{55\!\cdots\!20}{56\!\cdots\!21}a^{25}-\frac{22\!\cdots\!40}{56\!\cdots\!21}a^{24}-\frac{50\!\cdots\!32}{56\!\cdots\!21}a^{23}+\frac{15\!\cdots\!66}{56\!\cdots\!21}a^{22}-\frac{25\!\cdots\!41}{56\!\cdots\!21}a^{21}-\frac{15\!\cdots\!01}{56\!\cdots\!21}a^{20}+\frac{23\!\cdots\!79}{56\!\cdots\!21}a^{19}-\frac{47\!\cdots\!62}{56\!\cdots\!21}a^{18}-\frac{17\!\cdots\!14}{56\!\cdots\!21}a^{17}+\frac{18\!\cdots\!02}{56\!\cdots\!21}a^{16}+\frac{26\!\cdots\!18}{56\!\cdots\!21}a^{15}-\frac{12\!\cdots\!16}{56\!\cdots\!21}a^{14}+\frac{79\!\cdots\!68}{56\!\cdots\!21}a^{13}-\frac{22\!\cdots\!62}{56\!\cdots\!21}a^{12}-\frac{85\!\cdots\!28}{56\!\cdots\!21}a^{11}-\frac{49\!\cdots\!75}{56\!\cdots\!21}a^{10}+\frac{16\!\cdots\!05}{56\!\cdots\!21}a^{9}+\frac{40\!\cdots\!01}{56\!\cdots\!21}a^{8}-\frac{17\!\cdots\!58}{56\!\cdots\!21}a^{7}-\frac{29\!\cdots\!39}{15\!\cdots\!33}a^{6}-\frac{95\!\cdots\!34}{56\!\cdots\!21}a^{5}+\frac{12\!\cdots\!58}{56\!\cdots\!21}a^{4}-\frac{36\!\cdots\!83}{56\!\cdots\!21}a^{3}+\frac{77\!\cdots\!29}{56\!\cdots\!21}a^{2}-\frac{19\!\cdots\!25}{56\!\cdots\!21}a-\frac{82\!\cdots\!47}{44\!\cdots\!87}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 46*x^42 - 47*x^41 + 861*x^40 - 2333*x^39 + 12302*x^38 - 63990*x^37 + 133754*x^36 - 1021468*x^35 + 1930750*x^34 - 10014031*x^33 + 34478590*x^32 - 55120652*x^31 + 488448869*x^30 - 4801625*x^29 + 3550403737*x^28 - 3384252805*x^27 + 5825255746*x^26 - 28254892927*x^25 + 51190951460*x^24 - 144055141516*x^23 + 209880892930*x^22 - 3322585528251*x^21 + 9644185539226*x^20 - 31781584647001*x^19 + 93774885990329*x^18 - 268079177298866*x^17 + 734100939620087*x^16 - 1518218568490401*x^15 + 3168243981907192*x^14 - 5634610133492386*x^13 + 11148716367452975*x^12 - 19690479891452526*x^11 + 33905835107525892*x^10 - 49091119860089206*x^9 + 64926814287050439*x^8 - 72968813297711373*x^7 + 76402710809874371*x^6 - 68958090177933733*x^5 + 57707011951741390*x^4 - 39468700453637824*x^3 + 23684548337191503*x^2 - 9522126521026368*x + 3033550844805431)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 - x^43 + 46*x^42 - 47*x^41 + 861*x^40 - 2333*x^39 + 12302*x^38 - 63990*x^37 + 133754*x^36 - 1021468*x^35 + 1930750*x^34 - 10014031*x^33 + 34478590*x^32 - 55120652*x^31 + 488448869*x^30 - 4801625*x^29 + 3550403737*x^28 - 3384252805*x^27 + 5825255746*x^26 - 28254892927*x^25 + 51190951460*x^24 - 144055141516*x^23 + 209880892930*x^22 - 3322585528251*x^21 + 9644185539226*x^20 - 31781584647001*x^19 + 93774885990329*x^18 - 268079177298866*x^17 + 734100939620087*x^16 - 1518218568490401*x^15 + 3168243981907192*x^14 - 5634610133492386*x^13 + 11148716367452975*x^12 - 19690479891452526*x^11 + 33905835107525892*x^10 - 49091119860089206*x^9 + 64926814287050439*x^8 - 72968813297711373*x^7 + 76402710809874371*x^6 - 68958090177933733*x^5 + 57707011951741390*x^4 - 39468700453637824*x^3 + 23684548337191503*x^2 - 9522126521026368*x + 3033550844805431, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 - x^43 + 46*x^42 - 47*x^41 + 861*x^40 - 2333*x^39 + 12302*x^38 - 63990*x^37 + 133754*x^36 - 1021468*x^35 + 1930750*x^34 - 10014031*x^33 + 34478590*x^32 - 55120652*x^31 + 488448869*x^30 - 4801625*x^29 + 3550403737*x^28 - 3384252805*x^27 + 5825255746*x^26 - 28254892927*x^25 + 51190951460*x^24 - 144055141516*x^23 + 209880892930*x^22 - 3322585528251*x^21 + 9644185539226*x^20 - 31781584647001*x^19 + 93774885990329*x^18 - 268079177298866*x^17 + 734100939620087*x^16 - 1518218568490401*x^15 + 3168243981907192*x^14 - 5634610133492386*x^13 + 11148716367452975*x^12 - 19690479891452526*x^11 + 33905835107525892*x^10 - 49091119860089206*x^9 + 64926814287050439*x^8 - 72968813297711373*x^7 + 76402710809874371*x^6 - 68958090177933733*x^5 + 57707011951741390*x^4 - 39468700453637824*x^3 + 23684548337191503*x^2 - 9522126521026368*x + 3033550844805431);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 + 46*x^42 - 47*x^41 + 861*x^40 - 2333*x^39 + 12302*x^38 - 63990*x^37 + 133754*x^36 - 1021468*x^35 + 1930750*x^34 - 10014031*x^33 + 34478590*x^32 - 55120652*x^31 + 488448869*x^30 - 4801625*x^29 + 3550403737*x^28 - 3384252805*x^27 + 5825255746*x^26 - 28254892927*x^25 + 51190951460*x^24 - 144055141516*x^23 + 209880892930*x^22 - 3322585528251*x^21 + 9644185539226*x^20 - 31781584647001*x^19 + 93774885990329*x^18 - 268079177298866*x^17 + 734100939620087*x^16 - 1518218568490401*x^15 + 3168243981907192*x^14 - 5634610133492386*x^13 + 11148716367452975*x^12 - 19690479891452526*x^11 + 33905835107525892*x^10 - 49091119860089206*x^9 + 64926814287050439*x^8 - 72968813297711373*x^7 + 76402710809874371*x^6 - 68958090177933733*x^5 + 57707011951741390*x^4 - 39468700453637824*x^3 + 23684548337191503*x^2 - 9522126521026368*x + 3033550844805431);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{44}$ (as 44T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 44
The 44 conjugacy class representatives for $C_{44}$
Character table for $C_{44}$

Intermediate fields

\(\Q(\sqrt{445}) \), 4.0.88121125.2, 11.11.31181719929966183601.1, 22.22.4225325661298128736141932434930999908246533203125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $44$ $22^{2}$ R ${\href{/padicField/7.11.0.1}{11} }^{4}$ ${\href{/padicField/11.11.0.1}{11} }^{4}$ ${\href{/padicField/13.11.0.1}{11} }^{4}$ $44$ $44$ $22^{2}$ $44$ $44$ ${\href{/padicField/37.2.0.1}{2} }^{22}$ $44$ $22^{2}$ $44$ $44$ $44$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $44$$4$$11$$33$
\(89\) Copy content Toggle raw display Deg $44$$44$$1$$43$