# Oscar code for working with number field 44.0.65347506006797164323533696798768413693852562329201668296707932160000000000000000000000.1 # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to compile (this depends on the state of your Julia REPL), and/or to execute (this depends on the field). # Define the number field: Qx, x = polynomial_ring(QQ); K, a = number_field(x^44 + 41*x^42 + 784*x^40 + 9282*x^38 + 76180*x^36 + 459888*x^34 + 2114697*x^32 + 7568133*x^30 + 21358299*x^28 + 47872465*x^26 + 85431991*x^24 + 121194085*x^22 + 135920335*x^20 + 119357605*x^18 + 80900650*x^16 + 41459620*x^14 + 15683335*x^12 + 3901015*x^10 + 2054320*x^8 - 6489250*x^6 + 32853580*x^4 - 164244624*x^2 + 821223649) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 41*x^42 + 784*x^40 + 9282*x^38 + 76180*x^36 + 459888*x^34 + 2114697*x^32 + 7568133*x^30 + 21358299*x^28 + 47872465*x^26 + 85431991*x^24 + 121194085*x^22 + 135920335*x^20 + 119357605*x^18 + 80900650*x^16 + 41459620*x^14 + 15683335*x^12 + 3901015*x^10 + 2054320*x^8 - 6489250*x^6 + 32853580*x^4 - 164244624*x^2 + 821223649); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]