/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^44 + 41*x^42 + 784*x^40 + 9282*x^38 + 76180*x^36 + 459888*x^34 + 2114697*x^32 + 7568133*x^30 + 21358299*x^28 + 47872465*x^26 + 85431991*x^24 + 121194085*x^22 + 135920335*x^20 + 119357605*x^18 + 80900650*x^16 + 41459620*x^14 + 15683335*x^12 + 3901015*x^10 + 2054320*x^8 - 6489250*x^6 + 32853580*x^4 - 164244624*x^2 + 821223649, 44, 2, [0, 22], 65347506006797164323533696798768413693852562329201668296707932160000000000000000000000, [2, 5, 23], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, a^16, a^17, a^18, a^19, a^20, a^21, a^22, 1/28657*a^23 + 23/28657*a^21 + 230/28657*a^19 + 1311/28657*a^17 + 4692/28657*a^15 + 10948/28657*a^13 - 11913/28657*a^11 - 12212/28657*a^9 + 9867/28657*a^7 + 3289/28657*a^5 + 506/28657*a^3 + 23/28657*a, 1/1836311903*a^24 - 701408709/1836311903*a^22 - 740496650/1836311903*a^20 + 310528563/1836311903*a^18 + 797213775/1836311903*a^16 + 821062655/1836311903*a^14 + 397002165/1836311903*a^12 + 316332411/1836311903*a^10 + 8807566/1836311903*a^8 - 913753813/1836311903*a^6 - 328466028/1836311903*a^4 - 400109011/1836311903*a^2 + 15127/64079, 1/1836311903*a^25 + 25/1836311903*a^23 + 701409008/1836311903*a^21 + 39089919/1836311903*a^19 + 351800646/1836311903*a^17 - 676399496/1836311903*a^15 - 36556349/1836311903*a^13 - 346757081/1836311903*a^11 + 800375453/1836311903*a^9 + 662974061/1836311903*a^7 + 197109930/1836311903*a^5 + 104513114/1836311903*a^3 + 39088194/1836311903*a, 1/1836311903*a^26 - 126492297/1836311903*a^22 + 188387139/1836311903*a^20 - 66165817/1836311903*a^18 - 407312938/1836311903*a^16 - 363691791/1836311903*a^14 + 746060212/1836311903*a^12 + 237312790/1836311903*a^10 + 442784911/1836311903*a^8 - 831099484/1836311903*a^6 - 865395701/1836311903*a^4 + 860253954/1836311903*a^2 + 6299/64079, 1/1836311903*a^27 - 351/1836311903*a^23 - 574921909/1836311903*a^21 - 354008685/1836311903*a^19 + 155556998/1836311903*a^17 + 7774172/1836311903*a^15 - 835601745/1836311903*a^13 - 885479448/1836311903*a^11 + 61450782/1836311903*a^9 + 409149561/1836311903*a^7 + 160124615/1836311903*a^5 + 594262025/1836311903*a^3 - 582798605/1836311903*a, 1/1836311903*a^28 - 703583766/1836311903*a^22 + 487957391/1836311903*a^20 + 808680334/1836311903*a^18 + 710399941/1836311903*a^16 + 892733292/1836311903*a^14 + 738887742/1836311903*a^12 + 915412863/1836311903*a^10 - 172018579/1836311903*a^8 + 787119277/1836311903*a^6 - 845975817/1836311903*a^4 + 374955065/1836311903*a^2 - 8980/64079, 1/1836311903*a^29 + 3654/1836311903*a^23 + 143660924/1836311903*a^21 - 797972433/1836311903*a^19 - 551379648/1836311903*a^17 + 436106338/1836311903*a^15 + 285528817/1836311903*a^13 + 6003695/1836311903*a^11 - 278197482/1836311903*a^9 - 11112826/1836311903*a^7 - 499949217/1836311903*a^5 + 145680403/1836311903*a^3 - 601636327/1836311903*a, 1/1836311903*a^30 - 400332978/1836311903*a^22 + 89353548/1836311903*a^20 - 381992796/1836311903*a^18 - 192349354/1836311903*a^16 + 656236949/1836311903*a^14 + 46496155/1836311903*a^12 + 719671614/1836311903*a^10 + 859655264/1836311903*a^8 - 58556169/1836311903*a^6 - 587437847/1836311903*a^4 - 307584921/1836311903*a^2 + 26119/64079, 1/1836311903*a^31 - 31465/1836311903*a^23 + 114728832/1836311903*a^21 - 128239956/1836311903*a^19 - 582270069/1836311903*a^17 + 323859176/1836311903*a^15 - 729051982/1836311903*a^13 + 829759336/1836311903*a^11 + 639864294/1836311903*a^9 - 190430751/1836311903*a^7 - 631396041/1836311903*a^5 + 250671327/1836311903*a^3 + 773867467/1836311903*a, 1/1836311903*a^32 - 913849599/1836311903*a^22 - 729906942/1836311903*a^20 - 816671137/1836311903*a^18 + 634694571/1836311903*a^16 + 771536189/1836311903*a^14 + 73004952/1836311903*a^12 - 607649754/1836311903*a^10 - 343463914/1836311903*a^8 - 759656815/1836311903*a^6 - 169509609/1836311903*a^4 - 738068583/1836311903*a^2 - 7757/64079, 1/1836311903*a^33 - 18980/1836311903*a^23 + 88766362/1836311903*a^21 + 24814291/1836311903*a^19 - 445036579/1836311903*a^17 + 676507032/1836311903*a^15 + 463374220/1836311903*a^13 + 421458986/1836311903*a^11 - 775548611/1836311903*a^9 - 284382872/1836311903*a^7 - 623188929/1836311903*a^5 + 745936978/1836311903*a^3 + 596380955/1836311903*a, 1/1836311903*a^34 + 612766292/1836311903*a^22 + 529702853/1836311903*a^20 + 662192434/1836311903*a^18 + 583875812/1836311903*a^16 - 546554641/1836311903*a^14 - 701499226/1836311903*a^12 + 310001262/1836311903*a^10 - 221163365/1836311903*a^8 + 295364166/1836311903*a^6 + 739636223/1836311903*a^4 - 322928920/1836311903*a^2 - 27539/64079, 1/1836311903*a^35 - 21185/1836311903*a^23 - 710225797/1836311903*a^21 - 719222648/1836311903*a^19 - 312204924/1836311903*a^17 - 80956627/1836311903*a^15 + 384896140/1836311903*a^13 - 728911565/1836311903*a^11 + 168501034/1836311903*a^9 + 896425186/1836311903*a^7 - 284218039/1836311903*a^5 - 56680675/1836311903*a^3 - 192801870/1836311903*a, 1/1836311903*a^36 - 617806886/1836311903*a^22 - 528165569/1836311903*a^20 + 566165685/1836311903*a^18 + 332294857/1836311903*a^16 - 785414804/1836311903*a^14 - 546561780/1836311903*a^12 - 867817881/1836311903*a^10 + 180896790/1836311903*a^8 + 241334982/1836311903*a^6 - 823683388/1836311903*a^4 - 86455657/1836311903*a^2 + 6416/64079, 1/1836311903*a^37 - 21247/1836311903*a^23 + 826720807/1836311903*a^21 - 575465779/1836311903*a^19 + 435718363/1836311903*a^17 + 164620450/1836311903*a^15 - 166124757/1836311903*a^13 - 610028064/1836311903*a^11 - 648029154/1836311903*a^9 - 623282965/1836311903*a^7 + 112318565/1836311903*a^5 + 340054167/1836311903*a^3 - 297562215/1836311903*a, 1/1836311903*a^38 - 333026471/1836311903*a^22 - 2787075/13210877*a^20 + 367428945/1836311903*a^18 + 424704603/1836311903*a^16 - 10972472/1836311903*a^14 + 314401212/1836311903*a^12 - 434857617/1836311903*a^10 - 792742269/1836311903*a^8 + 910804173/1836311903*a^6 - 592411349/1836311903*a^4 + 710391958/1836311903*a^2 - 16895/64079, 1/1836311903*a^39 - 7908/1836311903*a^23 - 526792/13210877*a^21 - 163401491/1836311903*a^19 - 30192218/1836311903*a^17 - 189304329/1836311903*a^15 - 713810422/1836311903*a^13 + 585023747/1836311903*a^11 - 184568480/1836311903*a^9 - 193341076/1836311903*a^7 + 263748170/1836311903*a^5 + 277089760/1836311903*a^3 - 169980678/1836311903*a, 1/1836311903*a^40 + 684964103/1836311903*a^22 - 12251024/1836311903*a^20 + 480669675/1836311903*a^18 + 118465372/1836311903*a^16 + 887088213/1836311903*a^14 - 15209563/1836311903*a^12 + 315325822/1836311903*a^10 - 322961462/1836311903*a^8 + 185933271/1836311903*a^6 - 687228822/1836311903*a^4 - 266630797/1836311903*a^2 - 11177/64079, 1/1836311903*a^41 + 23672/1836311903*a^23 + 760926190/1836311903*a^21 + 867194203/1836311903*a^19 + 118080898/1836311903*a^17 + 692416211/1836311903*a^15 + 754763701/1836311903*a^13 - 559416607/1836311903*a^11 - 231136255/1836311903*a^9 - 493496366/1836311903*a^7 - 301601400/1836311903*a^5 + 216460784/1836311903*a^3 + 452877925/1836311903*a, 1/1836311903*a^42 + 575658712/1836311903*a^22 + 470466965/1836311903*a^20 + 42485271/1836311903*a^18 + 825361542/1836311903*a^16 + 84775893/1836311903*a^14 - 150346933/1836311903*a^12 + 27970987/1836311903*a^10 + 353358224/1836311903*a^8 + 160754499/1836311903*a^6 + 719678298/1836311903*a^4 + 136590643/1836311903*a^2 - 12892/64079, 1/1836311903*a^43 - 27024/1836311903*a^23 + 83878358/1836311903*a^21 - 150776993/1836311903*a^19 + 825553779/1836311903*a^17 + 182111894/1836311903*a^15 - 535333565/1836311903*a^13 - 452813750/1836311903*a^11 - 610710331/1836311903*a^9 - 417686634/1836311903*a^7 + 526864587/1836311903*a^5 + 813200804/1836311903*a^3 - 756034651/1836311903*a], 1, 0,0,0,0,0, [[x^2 + 5, 1], [x^2 - x + 29, 1], [x^2 - 23, 1], [x^4 - 9*x^2 + 49, 1], [x^11 - x^10 - 10*x^9 + 9*x^8 + 36*x^7 - 28*x^6 - 56*x^5 + 35*x^4 + 35*x^3 - 15*x^2 - 6*x + 1, 1], [x^22 - 2*x^21 + 36*x^20 - 62*x^19 + 779*x^18 - 1208*x^17 + 11785*x^16 - 16330*x^15 + 135402*x^14 - 166994*x^13 + 1216660*x^12 - 1317110*x^11 + 8641614*x^10 - 8043038*x^9 + 48218481*x^8 - 37307012*x^7 + 206484136*x^6 - 125495212*x^5 + 645715650*x^4 - 276536200*x^3 + 1328901156*x^2 - 304156912*x + 1368706081, 1], [x^22 - x^21 + 24*x^20 - 24*x^19 + 254*x^18 - 254*x^17 + 1565*x^16 - 1565*x^15 + 6257*x^14 - 6257*x^13 + 17205*x^12 - 17205*x^11 + 33949*x^10 - 33949*x^9 + 50394*x^8 - 50394*x^7 + 60261*x^6 - 60261*x^5 + 63550*x^4 - 63550*x^3 + 64056*x^2 - 64056*x + 64079, 1], [x^22 - 23*x^20 + 230*x^18 - 1311*x^16 + 4692*x^14 - 10948*x^12 + 16744*x^10 - 16445*x^8 + 9867*x^6 - 3289*x^4 + 506*x^2 - 23, 1]]]