Normalized defining polynomial
\( x^{44} - x^{43} - x^{42} + 3 x^{41} - x^{40} - 5 x^{39} + 7 x^{38} + 3 x^{37} - 17 x^{36} + 11 x^{35} + 23 x^{34} - 45 x^{33} - x^{32} + 91 x^{31} - 89 x^{30} - 93 x^{29} + 271 x^{28} - 85 x^{27} - 457 x^{26} + \cdots + 4194304 \)
Invariants
Degree: | $44$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 22]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(6091524468845815638846997953624350524431889522210325630882624592675376276321\)
\(\medspace = 7^{22}\cdot 23^{42}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(52.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(7\), \(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $44$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(161=7\cdot 23\) | ||
Dirichlet character group: | $\lbrace$$\chi_{161}(1,·)$, $\chi_{161}(132,·)$, $\chi_{161}(134,·)$, $\chi_{161}(8,·)$, $\chi_{161}(139,·)$, $\chi_{161}(13,·)$, $\chi_{161}(15,·)$, $\chi_{161}(146,·)$, $\chi_{161}(20,·)$, $\chi_{161}(22,·)$, $\chi_{161}(153,·)$, $\chi_{161}(155,·)$, $\chi_{161}(29,·)$, $\chi_{161}(160,·)$, $\chi_{161}(34,·)$, $\chi_{161}(27,·)$, $\chi_{161}(36,·)$, $\chi_{161}(6,·)$, $\chi_{161}(41,·)$, $\chi_{161}(43,·)$, $\chi_{161}(48,·)$, $\chi_{161}(50,·)$, $\chi_{161}(55,·)$, $\chi_{161}(57,·)$, $\chi_{161}(62,·)$, $\chi_{161}(64,·)$, $\chi_{161}(71,·)$, $\chi_{161}(76,·)$, $\chi_{161}(78,·)$, $\chi_{161}(141,·)$, $\chi_{161}(83,·)$, $\chi_{161}(85,·)$, $\chi_{161}(90,·)$, $\chi_{161}(97,·)$, $\chi_{161}(99,·)$, $\chi_{161}(104,·)$, $\chi_{161}(106,·)$, $\chi_{161}(111,·)$, $\chi_{161}(113,·)$, $\chi_{161}(118,·)$, $\chi_{161}(120,·)$, $\chi_{161}(148,·)$, $\chi_{161}(125,·)$, $\chi_{161}(127,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{2097152}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{1934}a^{23}-\frac{1}{2}a^{22}-\frac{1}{2}a^{21}-\frac{1}{2}a^{20}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{393}{967}$, $\frac{1}{3868}a^{24}-\frac{1}{3868}a^{23}+\frac{1}{4}a^{22}+\frac{1}{4}a^{21}+\frac{1}{4}a^{20}+\frac{1}{4}a^{19}+\frac{1}{4}a^{18}+\frac{1}{4}a^{17}+\frac{1}{4}a^{16}+\frac{1}{4}a^{15}+\frac{1}{4}a^{14}+\frac{1}{4}a^{13}+\frac{1}{4}a^{12}+\frac{1}{4}a^{11}+\frac{1}{4}a^{10}+\frac{1}{4}a^{9}+\frac{1}{4}a^{8}+\frac{1}{4}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{393}{1934}a+\frac{287}{967}$, $\frac{1}{7736}a^{25}-\frac{1}{7736}a^{24}-\frac{1}{7736}a^{23}-\frac{3}{8}a^{22}+\frac{1}{8}a^{21}-\frac{3}{8}a^{20}+\frac{1}{8}a^{19}-\frac{3}{8}a^{18}+\frac{1}{8}a^{17}-\frac{3}{8}a^{16}+\frac{1}{8}a^{15}-\frac{3}{8}a^{14}+\frac{1}{8}a^{13}-\frac{3}{8}a^{12}+\frac{1}{8}a^{11}-\frac{3}{8}a^{10}+\frac{1}{8}a^{9}-\frac{3}{8}a^{8}+\frac{1}{8}a^{7}-\frac{3}{8}a^{6}+\frac{1}{8}a^{5}-\frac{3}{8}a^{4}+\frac{1}{8}a^{3}-\frac{1541}{3868}a^{2}+\frac{287}{1934}a-\frac{340}{967}$, $\frac{1}{15472}a^{26}-\frac{1}{15472}a^{25}-\frac{1}{15472}a^{24}+\frac{3}{15472}a^{23}-\frac{7}{16}a^{22}-\frac{3}{16}a^{21}+\frac{1}{16}a^{20}+\frac{5}{16}a^{19}-\frac{7}{16}a^{18}-\frac{3}{16}a^{17}+\frac{1}{16}a^{16}+\frac{5}{16}a^{15}-\frac{7}{16}a^{14}-\frac{3}{16}a^{13}+\frac{1}{16}a^{12}+\frac{5}{16}a^{11}-\frac{7}{16}a^{10}-\frac{3}{16}a^{9}+\frac{1}{16}a^{8}+\frac{5}{16}a^{7}-\frac{7}{16}a^{6}-\frac{3}{16}a^{5}+\frac{1}{16}a^{4}-\frac{1541}{7736}a^{3}+\frac{287}{3868}a^{2}+\frac{627}{1934}a-\frac{457}{967}$, $\frac{1}{30944}a^{27}-\frac{1}{30944}a^{26}-\frac{1}{30944}a^{25}+\frac{3}{30944}a^{24}-\frac{1}{30944}a^{23}+\frac{13}{32}a^{22}+\frac{1}{32}a^{21}+\frac{5}{32}a^{20}-\frac{7}{32}a^{19}-\frac{3}{32}a^{18}-\frac{15}{32}a^{17}-\frac{11}{32}a^{16}+\frac{9}{32}a^{15}+\frac{13}{32}a^{14}+\frac{1}{32}a^{13}+\frac{5}{32}a^{12}-\frac{7}{32}a^{11}-\frac{3}{32}a^{10}-\frac{15}{32}a^{9}-\frac{11}{32}a^{8}+\frac{9}{32}a^{7}+\frac{13}{32}a^{6}+\frac{1}{32}a^{5}-\frac{1541}{15472}a^{4}+\frac{287}{7736}a^{3}+\frac{627}{3868}a^{2}-\frac{457}{1934}a-\frac{85}{967}$, $\frac{1}{61888}a^{28}-\frac{1}{61888}a^{27}-\frac{1}{61888}a^{26}+\frac{3}{61888}a^{25}-\frac{1}{61888}a^{24}-\frac{5}{61888}a^{23}+\frac{1}{64}a^{22}-\frac{27}{64}a^{21}+\frac{25}{64}a^{20}+\frac{29}{64}a^{19}-\frac{15}{64}a^{18}+\frac{21}{64}a^{17}+\frac{9}{64}a^{16}+\frac{13}{64}a^{15}-\frac{31}{64}a^{14}+\frac{5}{64}a^{13}-\frac{7}{64}a^{12}-\frac{3}{64}a^{11}+\frac{17}{64}a^{10}-\frac{11}{64}a^{9}-\frac{23}{64}a^{8}-\frac{19}{64}a^{7}+\frac{1}{64}a^{6}-\frac{1541}{30944}a^{5}+\frac{287}{15472}a^{4}+\frac{627}{7736}a^{3}-\frac{457}{3868}a^{2}-\frac{85}{1934}a+\frac{271}{967}$, $\frac{1}{123776}a^{29}-\frac{1}{123776}a^{28}-\frac{1}{123776}a^{27}+\frac{3}{123776}a^{26}-\frac{1}{123776}a^{25}-\frac{5}{123776}a^{24}+\frac{7}{123776}a^{23}-\frac{27}{128}a^{22}+\frac{25}{128}a^{21}+\frac{29}{128}a^{20}+\frac{49}{128}a^{19}+\frac{21}{128}a^{18}+\frac{9}{128}a^{17}-\frac{51}{128}a^{16}+\frac{33}{128}a^{15}-\frac{59}{128}a^{14}-\frac{7}{128}a^{13}-\frac{3}{128}a^{12}+\frac{17}{128}a^{11}-\frac{11}{128}a^{10}-\frac{23}{128}a^{9}+\frac{45}{128}a^{8}+\frac{1}{128}a^{7}-\frac{1541}{61888}a^{6}+\frac{287}{30944}a^{5}+\frac{627}{15472}a^{4}-\frac{457}{7736}a^{3}-\frac{85}{3868}a^{2}+\frac{271}{1934}a-\frac{93}{967}$, $\frac{1}{247552}a^{30}-\frac{1}{247552}a^{29}-\frac{1}{247552}a^{28}+\frac{3}{247552}a^{27}-\frac{1}{247552}a^{26}-\frac{5}{247552}a^{25}+\frac{7}{247552}a^{24}+\frac{3}{247552}a^{23}-\frac{103}{256}a^{22}-\frac{99}{256}a^{21}+\frac{49}{256}a^{20}-\frac{107}{256}a^{19}+\frac{9}{256}a^{18}-\frac{51}{256}a^{17}+\frac{33}{256}a^{16}+\frac{69}{256}a^{15}+\frac{121}{256}a^{14}-\frac{3}{256}a^{13}+\frac{17}{256}a^{12}-\frac{11}{256}a^{11}-\frac{23}{256}a^{10}+\frac{45}{256}a^{9}+\frac{1}{256}a^{8}-\frac{1541}{123776}a^{7}+\frac{287}{61888}a^{6}+\frac{627}{30944}a^{5}-\frac{457}{15472}a^{4}-\frac{85}{7736}a^{3}+\frac{271}{3868}a^{2}-\frac{93}{1934}a-\frac{89}{967}$, $\frac{1}{495104}a^{31}-\frac{1}{495104}a^{30}-\frac{1}{495104}a^{29}+\frac{3}{495104}a^{28}-\frac{1}{495104}a^{27}-\frac{5}{495104}a^{26}+\frac{7}{495104}a^{25}+\frac{3}{495104}a^{24}-\frac{17}{495104}a^{23}-\frac{99}{512}a^{22}-\frac{207}{512}a^{21}-\frac{107}{512}a^{20}+\frac{9}{512}a^{19}+\frac{205}{512}a^{18}-\frac{223}{512}a^{17}-\frac{187}{512}a^{16}+\frac{121}{512}a^{15}+\frac{253}{512}a^{14}+\frac{17}{512}a^{13}-\frac{11}{512}a^{12}-\frac{23}{512}a^{11}+\frac{45}{512}a^{10}+\frac{1}{512}a^{9}-\frac{1541}{247552}a^{8}+\frac{287}{123776}a^{7}+\frac{627}{61888}a^{6}-\frac{457}{30944}a^{5}-\frac{85}{15472}a^{4}+\frac{271}{7736}a^{3}-\frac{93}{3868}a^{2}-\frac{89}{1934}a+\frac{91}{967}$, $\frac{1}{990208}a^{32}-\frac{1}{990208}a^{31}-\frac{1}{990208}a^{30}+\frac{3}{990208}a^{29}-\frac{1}{990208}a^{28}-\frac{5}{990208}a^{27}+\frac{7}{990208}a^{26}+\frac{3}{990208}a^{25}-\frac{17}{990208}a^{24}+\frac{11}{990208}a^{23}+\frac{305}{1024}a^{22}-\frac{107}{1024}a^{21}-\frac{503}{1024}a^{20}-\frac{307}{1024}a^{19}+\frac{289}{1024}a^{18}+\frac{325}{1024}a^{17}+\frac{121}{1024}a^{16}+\frac{253}{1024}a^{15}-\frac{495}{1024}a^{14}-\frac{11}{1024}a^{13}-\frac{23}{1024}a^{12}+\frac{45}{1024}a^{11}+\frac{1}{1024}a^{10}-\frac{1541}{495104}a^{9}+\frac{287}{247552}a^{8}+\frac{627}{123776}a^{7}-\frac{457}{61888}a^{6}-\frac{85}{30944}a^{5}+\frac{271}{15472}a^{4}-\frac{93}{7736}a^{3}-\frac{89}{3868}a^{2}+\frac{91}{1934}a-\frac{1}{967}$, $\frac{1}{1980416}a^{33}-\frac{1}{1980416}a^{32}-\frac{1}{1980416}a^{31}+\frac{3}{1980416}a^{30}-\frac{1}{1980416}a^{29}-\frac{5}{1980416}a^{28}+\frac{7}{1980416}a^{27}+\frac{3}{1980416}a^{26}-\frac{17}{1980416}a^{25}+\frac{11}{1980416}a^{24}+\frac{23}{1980416}a^{23}+\frac{917}{2048}a^{22}+\frac{521}{2048}a^{21}-\frac{307}{2048}a^{20}-\frac{735}{2048}a^{19}-\frac{699}{2048}a^{18}+\frac{121}{2048}a^{17}-\frac{771}{2048}a^{16}+\frac{529}{2048}a^{15}+\frac{1013}{2048}a^{14}-\frac{23}{2048}a^{13}+\frac{45}{2048}a^{12}+\frac{1}{2048}a^{11}-\frac{1541}{990208}a^{10}+\frac{287}{495104}a^{9}+\frac{627}{247552}a^{8}-\frac{457}{123776}a^{7}-\frac{85}{61888}a^{6}+\frac{271}{30944}a^{5}-\frac{93}{15472}a^{4}-\frac{89}{7736}a^{3}+\frac{91}{3868}a^{2}-\frac{1}{1934}a-\frac{45}{967}$, $\frac{1}{3960832}a^{34}-\frac{1}{3960832}a^{33}-\frac{1}{3960832}a^{32}+\frac{3}{3960832}a^{31}-\frac{1}{3960832}a^{30}-\frac{5}{3960832}a^{29}+\frac{7}{3960832}a^{28}+\frac{3}{3960832}a^{27}-\frac{17}{3960832}a^{26}+\frac{11}{3960832}a^{25}+\frac{23}{3960832}a^{24}-\frac{45}{3960832}a^{23}+\frac{521}{4096}a^{22}+\frac{1741}{4096}a^{21}+\frac{1313}{4096}a^{20}-\frac{699}{4096}a^{19}-\frac{1927}{4096}a^{18}-\frac{771}{4096}a^{17}+\frac{529}{4096}a^{16}+\frac{1013}{4096}a^{15}+\frac{2025}{4096}a^{14}+\frac{45}{4096}a^{13}+\frac{1}{4096}a^{12}-\frac{1541}{1980416}a^{11}+\frac{287}{990208}a^{10}+\frac{627}{495104}a^{9}-\frac{457}{247552}a^{8}-\frac{85}{123776}a^{7}+\frac{271}{61888}a^{6}-\frac{93}{30944}a^{5}-\frac{89}{15472}a^{4}+\frac{91}{7736}a^{3}-\frac{1}{3868}a^{2}-\frac{45}{1934}a+\frac{23}{967}$, $\frac{1}{7921664}a^{35}-\frac{1}{7921664}a^{34}-\frac{1}{7921664}a^{33}+\frac{3}{7921664}a^{32}-\frac{1}{7921664}a^{31}-\frac{5}{7921664}a^{30}+\frac{7}{7921664}a^{29}+\frac{3}{7921664}a^{28}-\frac{17}{7921664}a^{27}+\frac{11}{7921664}a^{26}+\frac{23}{7921664}a^{25}-\frac{45}{7921664}a^{24}-\frac{1}{7921664}a^{23}-\frac{2355}{8192}a^{22}+\frac{1313}{8192}a^{21}+\frac{3397}{8192}a^{20}+\frac{2169}{8192}a^{19}-\frac{771}{8192}a^{18}-\frac{3567}{8192}a^{17}-\frac{3083}{8192}a^{16}+\frac{2025}{8192}a^{15}-\frac{4051}{8192}a^{14}+\frac{1}{8192}a^{13}-\frac{1541}{3960832}a^{12}+\frac{287}{1980416}a^{11}+\frac{627}{990208}a^{10}-\frac{457}{495104}a^{9}-\frac{85}{247552}a^{8}+\frac{271}{123776}a^{7}-\frac{93}{61888}a^{6}-\frac{89}{30944}a^{5}+\frac{91}{15472}a^{4}-\frac{1}{7736}a^{3}-\frac{45}{3868}a^{2}+\frac{23}{1934}a+\frac{11}{967}$, $\frac{1}{15843328}a^{36}-\frac{1}{15843328}a^{35}-\frac{1}{15843328}a^{34}+\frac{3}{15843328}a^{33}-\frac{1}{15843328}a^{32}-\frac{5}{15843328}a^{31}+\frac{7}{15843328}a^{30}+\frac{3}{15843328}a^{29}-\frac{17}{15843328}a^{28}+\frac{11}{15843328}a^{27}+\frac{23}{15843328}a^{26}-\frac{45}{15843328}a^{25}-\frac{1}{15843328}a^{24}+\frac{91}{15843328}a^{23}-\frac{6879}{16384}a^{22}-\frac{4795}{16384}a^{21}+\frac{2169}{16384}a^{20}+\frac{7421}{16384}a^{19}+\frac{4625}{16384}a^{18}-\frac{3083}{16384}a^{17}-\frac{6167}{16384}a^{16}-\frac{4051}{16384}a^{15}+\frac{1}{16384}a^{14}-\frac{1541}{7921664}a^{13}+\frac{287}{3960832}a^{12}+\frac{627}{1980416}a^{11}-\frac{457}{990208}a^{10}-\frac{85}{495104}a^{9}+\frac{271}{247552}a^{8}-\frac{93}{123776}a^{7}-\frac{89}{61888}a^{6}+\frac{91}{30944}a^{5}-\frac{1}{15472}a^{4}-\frac{45}{7736}a^{3}+\frac{23}{3868}a^{2}+\frac{11}{1934}a-\frac{17}{967}$, $\frac{1}{31686656}a^{37}-\frac{1}{31686656}a^{36}-\frac{1}{31686656}a^{35}+\frac{3}{31686656}a^{34}-\frac{1}{31686656}a^{33}-\frac{5}{31686656}a^{32}+\frac{7}{31686656}a^{31}+\frac{3}{31686656}a^{30}-\frac{17}{31686656}a^{29}+\frac{11}{31686656}a^{28}+\frac{23}{31686656}a^{27}-\frac{45}{31686656}a^{26}-\frac{1}{31686656}a^{25}+\frac{91}{31686656}a^{24}-\frac{89}{31686656}a^{23}+\frac{11589}{32768}a^{22}+\frac{2169}{32768}a^{21}+\frac{7421}{32768}a^{20}-\frac{11759}{32768}a^{19}-\frac{3083}{32768}a^{18}-\frac{6167}{32768}a^{17}+\frac{12333}{32768}a^{16}+\frac{1}{32768}a^{15}-\frac{1541}{15843328}a^{14}+\frac{287}{7921664}a^{13}+\frac{627}{3960832}a^{12}-\frac{457}{1980416}a^{11}-\frac{85}{990208}a^{10}+\frac{271}{495104}a^{9}-\frac{93}{247552}a^{8}-\frac{89}{123776}a^{7}+\frac{91}{61888}a^{6}-\frac{1}{30944}a^{5}-\frac{45}{15472}a^{4}+\frac{23}{7736}a^{3}+\frac{11}{3868}a^{2}-\frac{17}{1934}a+\frac{3}{967}$, $\frac{1}{63373312}a^{38}-\frac{1}{63373312}a^{37}-\frac{1}{63373312}a^{36}+\frac{3}{63373312}a^{35}-\frac{1}{63373312}a^{34}-\frac{5}{63373312}a^{33}+\frac{7}{63373312}a^{32}+\frac{3}{63373312}a^{31}-\frac{17}{63373312}a^{30}+\frac{11}{63373312}a^{29}+\frac{23}{63373312}a^{28}-\frac{45}{63373312}a^{27}-\frac{1}{63373312}a^{26}+\frac{91}{63373312}a^{25}-\frac{89}{63373312}a^{24}-\frac{93}{63373312}a^{23}+\frac{2169}{65536}a^{22}-\frac{25347}{65536}a^{21}+\frac{21009}{65536}a^{20}+\frac{29685}{65536}a^{19}-\frac{6167}{65536}a^{18}+\frac{12333}{65536}a^{17}+\frac{1}{65536}a^{16}-\frac{1541}{31686656}a^{15}+\frac{287}{15843328}a^{14}+\frac{627}{7921664}a^{13}-\frac{457}{3960832}a^{12}-\frac{85}{1980416}a^{11}+\frac{271}{990208}a^{10}-\frac{93}{495104}a^{9}-\frac{89}{247552}a^{8}+\frac{91}{123776}a^{7}-\frac{1}{61888}a^{6}-\frac{45}{30944}a^{5}+\frac{23}{15472}a^{4}+\frac{11}{7736}a^{3}-\frac{17}{3868}a^{2}+\frac{3}{1934}a+\frac{7}{967}$, $\frac{1}{126746624}a^{39}-\frac{1}{126746624}a^{38}-\frac{1}{126746624}a^{37}+\frac{3}{126746624}a^{36}-\frac{1}{126746624}a^{35}-\frac{5}{126746624}a^{34}+\frac{7}{126746624}a^{33}+\frac{3}{126746624}a^{32}-\frac{17}{126746624}a^{31}+\frac{11}{126746624}a^{30}+\frac{23}{126746624}a^{29}-\frac{45}{126746624}a^{28}-\frac{1}{126746624}a^{27}+\frac{91}{126746624}a^{26}-\frac{89}{126746624}a^{25}-\frac{93}{126746624}a^{24}+\frac{271}{126746624}a^{23}-\frac{25347}{131072}a^{22}+\frac{21009}{131072}a^{21}+\frac{29685}{131072}a^{20}+\frac{59369}{131072}a^{19}+\frac{12333}{131072}a^{18}+\frac{1}{131072}a^{17}-\frac{1541}{63373312}a^{16}+\frac{287}{31686656}a^{15}+\frac{627}{15843328}a^{14}-\frac{457}{7921664}a^{13}-\frac{85}{3960832}a^{12}+\frac{271}{1980416}a^{11}-\frac{93}{990208}a^{10}-\frac{89}{495104}a^{9}+\frac{91}{247552}a^{8}-\frac{1}{123776}a^{7}-\frac{45}{61888}a^{6}+\frac{23}{30944}a^{5}+\frac{11}{15472}a^{4}-\frac{17}{7736}a^{3}+\frac{3}{3868}a^{2}+\frac{7}{1934}a-\frac{5}{967}$, $\frac{1}{253493248}a^{40}-\frac{1}{253493248}a^{39}-\frac{1}{253493248}a^{38}+\frac{3}{253493248}a^{37}-\frac{1}{253493248}a^{36}-\frac{5}{253493248}a^{35}+\frac{7}{253493248}a^{34}+\frac{3}{253493248}a^{33}-\frac{17}{253493248}a^{32}+\frac{11}{253493248}a^{31}+\frac{23}{253493248}a^{30}-\frac{45}{253493248}a^{29}-\frac{1}{253493248}a^{28}+\frac{91}{253493248}a^{27}-\frac{89}{253493248}a^{26}-\frac{93}{253493248}a^{25}+\frac{271}{253493248}a^{24}-\frac{85}{253493248}a^{23}-\frac{110063}{262144}a^{22}-\frac{101387}{262144}a^{21}+\frac{59369}{262144}a^{20}-\frac{118739}{262144}a^{19}+\frac{1}{262144}a^{18}-\frac{1541}{126746624}a^{17}+\frac{287}{63373312}a^{16}+\frac{627}{31686656}a^{15}-\frac{457}{15843328}a^{14}-\frac{85}{7921664}a^{13}+\frac{271}{3960832}a^{12}-\frac{93}{1980416}a^{11}-\frac{89}{990208}a^{10}+\frac{91}{495104}a^{9}-\frac{1}{247552}a^{8}-\frac{45}{123776}a^{7}+\frac{23}{61888}a^{6}+\frac{11}{30944}a^{5}-\frac{17}{15472}a^{4}+\frac{3}{7736}a^{3}+\frac{7}{3868}a^{2}-\frac{5}{1934}a-\frac{1}{967}$, $\frac{1}{506986496}a^{41}-\frac{1}{506986496}a^{40}-\frac{1}{506986496}a^{39}+\frac{3}{506986496}a^{38}-\frac{1}{506986496}a^{37}-\frac{5}{506986496}a^{36}+\frac{7}{506986496}a^{35}+\frac{3}{506986496}a^{34}-\frac{17}{506986496}a^{33}+\frac{11}{506986496}a^{32}+\frac{23}{506986496}a^{31}-\frac{45}{506986496}a^{30}-\frac{1}{506986496}a^{29}+\frac{91}{506986496}a^{28}-\frac{89}{506986496}a^{27}-\frac{93}{506986496}a^{26}+\frac{271}{506986496}a^{25}-\frac{85}{506986496}a^{24}-\frac{457}{506986496}a^{23}-\frac{101387}{524288}a^{22}-\frac{202775}{524288}a^{21}-\frac{118739}{524288}a^{20}+\frac{1}{524288}a^{19}-\frac{1541}{253493248}a^{18}+\frac{287}{126746624}a^{17}+\frac{627}{63373312}a^{16}-\frac{457}{31686656}a^{15}-\frac{85}{15843328}a^{14}+\frac{271}{7921664}a^{13}-\frac{93}{3960832}a^{12}-\frac{89}{1980416}a^{11}+\frac{91}{990208}a^{10}-\frac{1}{495104}a^{9}-\frac{45}{247552}a^{8}+\frac{23}{123776}a^{7}+\frac{11}{61888}a^{6}-\frac{17}{30944}a^{5}+\frac{3}{15472}a^{4}+\frac{7}{7736}a^{3}-\frac{5}{3868}a^{2}-\frac{1}{1934}a+\frac{3}{967}$, $\frac{1}{1013972992}a^{42}-\frac{1}{1013972992}a^{41}-\frac{1}{1013972992}a^{40}+\frac{3}{1013972992}a^{39}-\frac{1}{1013972992}a^{38}-\frac{5}{1013972992}a^{37}+\frac{7}{1013972992}a^{36}+\frac{3}{1013972992}a^{35}-\frac{17}{1013972992}a^{34}+\frac{11}{1013972992}a^{33}+\frac{23}{1013972992}a^{32}-\frac{45}{1013972992}a^{31}-\frac{1}{1013972992}a^{30}+\frac{91}{1013972992}a^{29}-\frac{89}{1013972992}a^{28}-\frac{93}{1013972992}a^{27}+\frac{271}{1013972992}a^{26}-\frac{85}{1013972992}a^{25}-\frac{457}{1013972992}a^{24}+\frac{627}{1013972992}a^{23}-\frac{202775}{1048576}a^{22}+\frac{405549}{1048576}a^{21}+\frac{1}{1048576}a^{20}-\frac{1541}{506986496}a^{19}+\frac{287}{253493248}a^{18}+\frac{627}{126746624}a^{17}-\frac{457}{63373312}a^{16}-\frac{85}{31686656}a^{15}+\frac{271}{15843328}a^{14}-\frac{93}{7921664}a^{13}-\frac{89}{3960832}a^{12}+\frac{91}{1980416}a^{11}-\frac{1}{990208}a^{10}-\frac{45}{495104}a^{9}+\frac{23}{247552}a^{8}+\frac{11}{123776}a^{7}-\frac{17}{61888}a^{6}+\frac{3}{30944}a^{5}+\frac{7}{15472}a^{4}-\frac{5}{7736}a^{3}-\frac{1}{3868}a^{2}+\frac{3}{1934}a-\frac{1}{967}$, $\frac{1}{2027945984}a^{43}-\frac{1}{2027945984}a^{42}-\frac{1}{2027945984}a^{41}+\frac{3}{2027945984}a^{40}-\frac{1}{2027945984}a^{39}-\frac{5}{2027945984}a^{38}+\frac{7}{2027945984}a^{37}+\frac{3}{2027945984}a^{36}-\frac{17}{2027945984}a^{35}+\frac{11}{2027945984}a^{34}+\frac{23}{2027945984}a^{33}-\frac{45}{2027945984}a^{32}-\frac{1}{2027945984}a^{31}+\frac{91}{2027945984}a^{30}-\frac{89}{2027945984}a^{29}-\frac{93}{2027945984}a^{28}+\frac{271}{2027945984}a^{27}-\frac{85}{2027945984}a^{26}-\frac{457}{2027945984}a^{25}+\frac{627}{2027945984}a^{24}+\frac{287}{2027945984}a^{23}+\frac{405549}{2097152}a^{22}+\frac{1}{2097152}a^{21}-\frac{1541}{1013972992}a^{20}+\frac{287}{506986496}a^{19}+\frac{627}{253493248}a^{18}-\frac{457}{126746624}a^{17}-\frac{85}{63373312}a^{16}+\frac{271}{31686656}a^{15}-\frac{93}{15843328}a^{14}-\frac{89}{7921664}a^{13}+\frac{91}{3960832}a^{12}-\frac{1}{1980416}a^{11}-\frac{45}{990208}a^{10}+\frac{23}{495104}a^{9}+\frac{11}{247552}a^{8}-\frac{17}{123776}a^{7}+\frac{3}{61888}a^{6}+\frac{7}{30944}a^{5}-\frac{5}{15472}a^{4}-\frac{1}{7736}a^{3}+\frac{3}{3868}a^{2}-\frac{1}{1934}a-\frac{1}{967}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{287}{2027945984} a^{43} + \frac{287}{2027945984} a^{42} - \frac{861}{2027945984} a^{41} + \frac{287}{2027945984} a^{40} + \frac{1435}{2027945984} a^{39} - \frac{2009}{2027945984} a^{38} - \frac{861}{2027945984} a^{37} + \frac{4879}{2027945984} a^{36} - \frac{3157}{2027945984} a^{35} - \frac{6601}{2027945984} a^{34} + \frac{12915}{2027945984} a^{33} + \frac{287}{2027945984} a^{32} - \frac{26117}{2027945984} a^{31} + \frac{25543}{2027945984} a^{30} + \frac{26691}{2027945984} a^{29} - \frac{77777}{2027945984} a^{28} + \frac{24395}{2027945984} a^{27} + \frac{131159}{2027945984} a^{26} - \frac{179949}{2027945984} a^{25} - \frac{82369}{2027945984} a^{24} + \frac{442267}{2027945984} a^{23} - \frac{287}{2097152} a^{22} + \frac{1541}{2097152} a^{21} - \frac{82369}{506986496} a^{20} - \frac{179949}{253493248} a^{19} + \frac{131159}{126746624} a^{18} + \frac{24395}{63373312} a^{17} - \frac{77777}{31686656} a^{16} + \frac{26691}{15843328} a^{15} + \frac{25543}{7921664} a^{14} - \frac{26117}{3960832} a^{13} + \frac{287}{1980416} a^{12} + \frac{12915}{990208} a^{11} - \frac{6601}{495104} a^{10} - \frac{3157}{247552} a^{9} + \frac{4879}{123776} a^{8} - \frac{861}{61888} a^{7} - \frac{2009}{30944} a^{6} + \frac{1435}{15472} a^{5} + \frac{287}{7736} a^{4} - \frac{861}{3868} a^{3} + \frac{287}{1934} a^{2} + \frac{287}{967} a - \frac{574}{967} \)
(order $46$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $
Galois group
$C_2\times C_{22}$ (as 44T2):
An abelian group of order 44 |
The 44 conjugacy class representatives for $C_2\times C_{22}$ |
Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | R | ${\href{/padicField/29.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\)
| Deg $44$ | $2$ | $22$ | $22$ | |||
\(23\)
| 23.22.21.17 | $x^{22} + 23$ | $22$ | $1$ | $21$ | 22T1 | $[\ ]_{22}$ |
23.22.21.17 | $x^{22} + 23$ | $22$ | $1$ | $21$ | 22T1 | $[\ ]_{22}$ |