Properties

Label 44.0.559...173.1
Degree $44$
Signature $[0, 22]$
Discriminant $5.597\times 10^{111}$
Root discriminant \(346.52\)
Ramified prime $397$
Class number not computed
Class group not computed
Galois group $C_{44}$ (as 44T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 5*x^42 + 233*x^41 - 43*x^40 - 317*x^39 + 21354*x^38 - 8471*x^37 - 151376*x^36 + 1217682*x^35 - 403318*x^34 - 13423140*x^33 + 39424468*x^32 + 11309151*x^31 - 468010089*x^30 + 2106045295*x^29 + 4999168352*x^28 - 15496523572*x^27 + 27333197279*x^26 + 146391454839*x^25 - 312880692651*x^24 - 497479186023*x^23 + 3337233114050*x^22 - 5154686504208*x^21 - 9975661659479*x^20 + 39190922446136*x^19 + 57957376494193*x^18 - 161104990158775*x^17 + 196673793129365*x^16 - 626752756885128*x^15 + 1216721201591554*x^14 - 929884305980460*x^13 + 2927299441177083*x^12 - 5827697965195326*x^11 + 3936747024923923*x^10 + 3885081410749703*x^9 + 2351827428652833*x^8 - 13196939560476147*x^7 - 3069516740265001*x^6 + 14364461602517046*x^5 + 9918438847528303*x^4 + 3219150416916658*x^3 + 17304522003647720*x^2 + 4819100819162179*x + 10922358066448429)
 
gp: K = bnfinit(y^44 - y^43 + 5*y^42 + 233*y^41 - 43*y^40 - 317*y^39 + 21354*y^38 - 8471*y^37 - 151376*y^36 + 1217682*y^35 - 403318*y^34 - 13423140*y^33 + 39424468*y^32 + 11309151*y^31 - 468010089*y^30 + 2106045295*y^29 + 4999168352*y^28 - 15496523572*y^27 + 27333197279*y^26 + 146391454839*y^25 - 312880692651*y^24 - 497479186023*y^23 + 3337233114050*y^22 - 5154686504208*y^21 - 9975661659479*y^20 + 39190922446136*y^19 + 57957376494193*y^18 - 161104990158775*y^17 + 196673793129365*y^16 - 626752756885128*y^15 + 1216721201591554*y^14 - 929884305980460*y^13 + 2927299441177083*y^12 - 5827697965195326*y^11 + 3936747024923923*y^10 + 3885081410749703*y^9 + 2351827428652833*y^8 - 13196939560476147*y^7 - 3069516740265001*y^6 + 14364461602517046*y^5 + 9918438847528303*y^4 + 3219150416916658*y^3 + 17304522003647720*y^2 + 4819100819162179*y + 10922358066448429, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 - x^43 + 5*x^42 + 233*x^41 - 43*x^40 - 317*x^39 + 21354*x^38 - 8471*x^37 - 151376*x^36 + 1217682*x^35 - 403318*x^34 - 13423140*x^33 + 39424468*x^32 + 11309151*x^31 - 468010089*x^30 + 2106045295*x^29 + 4999168352*x^28 - 15496523572*x^27 + 27333197279*x^26 + 146391454839*x^25 - 312880692651*x^24 - 497479186023*x^23 + 3337233114050*x^22 - 5154686504208*x^21 - 9975661659479*x^20 + 39190922446136*x^19 + 57957376494193*x^18 - 161104990158775*x^17 + 196673793129365*x^16 - 626752756885128*x^15 + 1216721201591554*x^14 - 929884305980460*x^13 + 2927299441177083*x^12 - 5827697965195326*x^11 + 3936747024923923*x^10 + 3885081410749703*x^9 + 2351827428652833*x^8 - 13196939560476147*x^7 - 3069516740265001*x^6 + 14364461602517046*x^5 + 9918438847528303*x^4 + 3219150416916658*x^3 + 17304522003647720*x^2 + 4819100819162179*x + 10922358066448429);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 + 5*x^42 + 233*x^41 - 43*x^40 - 317*x^39 + 21354*x^38 - 8471*x^37 - 151376*x^36 + 1217682*x^35 - 403318*x^34 - 13423140*x^33 + 39424468*x^32 + 11309151*x^31 - 468010089*x^30 + 2106045295*x^29 + 4999168352*x^28 - 15496523572*x^27 + 27333197279*x^26 + 146391454839*x^25 - 312880692651*x^24 - 497479186023*x^23 + 3337233114050*x^22 - 5154686504208*x^21 - 9975661659479*x^20 + 39190922446136*x^19 + 57957376494193*x^18 - 161104990158775*x^17 + 196673793129365*x^16 - 626752756885128*x^15 + 1216721201591554*x^14 - 929884305980460*x^13 + 2927299441177083*x^12 - 5827697965195326*x^11 + 3936747024923923*x^10 + 3885081410749703*x^9 + 2351827428652833*x^8 - 13196939560476147*x^7 - 3069516740265001*x^6 + 14364461602517046*x^5 + 9918438847528303*x^4 + 3219150416916658*x^3 + 17304522003647720*x^2 + 4819100819162179*x + 10922358066448429)
 

\( x^{44} - x^{43} + 5 x^{42} + 233 x^{41} - 43 x^{40} - 317 x^{39} + 21354 x^{38} - 8471 x^{37} + \cdots + 10\!\cdots\!29 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(559\!\cdots\!173\) \(\medspace = 397^{43}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(346.52\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $397^{43/44}\approx 346.51902691480075$
Ramified primes:   \(397\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{397}) \)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(397\)
Dirichlet character group:    $\lbrace$$\chi_{397}(128,·)$, $\chi_{397}(1,·)$, $\chi_{397}(2,·)$, $\chi_{397}(4,·)$, $\chi_{397}(389,·)$, $\chi_{397}(8,·)$, $\chi_{397}(393,·)$, $\chi_{397}(395,·)$, $\chi_{397}(396,·)$, $\chi_{397}(141,·)$, $\chi_{397}(256,·)$, $\chi_{397}(271,·)$, $\chi_{397}(16,·)$, $\chi_{397}(145,·)$, $\chi_{397}(149,·)$, $\chi_{397}(282,·)$, $\chi_{397}(31,·)$, $\chi_{397}(32,·)$, $\chi_{397}(290,·)$, $\chi_{397}(167,·)$, $\chi_{397}(298,·)$, $\chi_{397}(183,·)$, $\chi_{397}(62,·)$, $\chi_{397}(63,·)$, $\chi_{397}(64,·)$, $\chi_{397}(198,·)$, $\chi_{397}(199,·)$, $\chi_{397}(333,·)$, $\chi_{397}(334,·)$, $\chi_{397}(269,·)$, $\chi_{397}(214,·)$, $\chi_{397}(335,·)$, $\chi_{397}(99,·)$, $\chi_{397}(230,·)$, $\chi_{397}(273,·)$, $\chi_{397}(124,·)$, $\chi_{397}(107,·)$, $\chi_{397}(365,·)$, $\chi_{397}(366,·)$, $\chi_{397}(115,·)$, $\chi_{397}(248,·)$, $\chi_{397}(252,·)$, $\chi_{397}(381,·)$, $\chi_{397}(126,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $\frac{1}{79}a^{37}-\frac{38}{79}a^{36}-\frac{37}{79}a^{35}+\frac{32}{79}a^{34}+\frac{39}{79}a^{33}+\frac{1}{79}a^{32}-\frac{11}{79}a^{31}+\frac{2}{79}a^{30}+\frac{19}{79}a^{29}-\frac{15}{79}a^{28}+\frac{6}{79}a^{27}+\frac{8}{79}a^{26}-\frac{11}{79}a^{25}-\frac{24}{79}a^{24}-\frac{14}{79}a^{23}+\frac{38}{79}a^{22}+\frac{12}{79}a^{21}+\frac{31}{79}a^{20}-\frac{15}{79}a^{19}+\frac{9}{79}a^{18}+\frac{33}{79}a^{17}-\frac{2}{79}a^{16}+\frac{11}{79}a^{15}+\frac{29}{79}a^{14}+\frac{35}{79}a^{13}+\frac{33}{79}a^{12}-\frac{13}{79}a^{11}+\frac{26}{79}a^{10}+\frac{18}{79}a^{9}+\frac{9}{79}a^{8}+\frac{26}{79}a^{7}-\frac{8}{79}a^{6}+\frac{13}{79}a^{5}-\frac{30}{79}a^{4}+\frac{3}{79}a^{3}+\frac{7}{79}a^{2}-\frac{7}{79}a$, $\frac{1}{79}a^{38}+\frac{20}{79}a^{36}-\frac{31}{79}a^{35}-\frac{9}{79}a^{34}-\frac{18}{79}a^{33}+\frac{27}{79}a^{32}-\frac{21}{79}a^{31}+\frac{16}{79}a^{30}-\frac{4}{79}a^{29}-\frac{11}{79}a^{28}-\frac{1}{79}a^{27}-\frac{23}{79}a^{26}+\frac{32}{79}a^{25}+\frac{22}{79}a^{24}-\frac{20}{79}a^{23}+\frac{34}{79}a^{22}+\frac{13}{79}a^{21}-\frac{22}{79}a^{20}-\frac{8}{79}a^{19}-\frac{20}{79}a^{18}-\frac{12}{79}a^{17}+\frac{14}{79}a^{16}-\frac{27}{79}a^{15}+\frac{31}{79}a^{14}+\frac{20}{79}a^{13}-\frac{23}{79}a^{12}+\frac{6}{79}a^{11}-\frac{21}{79}a^{10}-\frac{18}{79}a^{9}-\frac{27}{79}a^{8}+\frac{32}{79}a^{7}+\frac{25}{79}a^{6}-\frac{10}{79}a^{5}-\frac{31}{79}a^{4}-\frac{37}{79}a^{3}+\frac{22}{79}a^{2}-\frac{29}{79}a$, $\frac{1}{79}a^{39}+\frac{18}{79}a^{36}+\frac{20}{79}a^{35}-\frac{26}{79}a^{34}+\frac{37}{79}a^{33}+\frac{38}{79}a^{32}-\frac{1}{79}a^{31}+\frac{35}{79}a^{30}+\frac{4}{79}a^{29}-\frac{17}{79}a^{28}+\frac{15}{79}a^{27}+\frac{30}{79}a^{26}+\frac{5}{79}a^{25}-\frac{14}{79}a^{24}-\frac{2}{79}a^{23}-\frac{36}{79}a^{22}-\frac{25}{79}a^{21}+\frac{4}{79}a^{20}-\frac{36}{79}a^{19}-\frac{34}{79}a^{18}-\frac{14}{79}a^{17}+\frac{13}{79}a^{16}-\frac{31}{79}a^{15}-\frac{7}{79}a^{14}-\frac{12}{79}a^{13}-\frac{22}{79}a^{12}+\frac{2}{79}a^{11}+\frac{15}{79}a^{10}+\frac{8}{79}a^{9}+\frac{10}{79}a^{8}-\frac{21}{79}a^{7}-\frac{8}{79}a^{6}+\frac{25}{79}a^{5}+\frac{10}{79}a^{4}-\frac{38}{79}a^{3}-\frac{11}{79}a^{2}-\frac{18}{79}a$, $\frac{1}{34049}a^{40}+\frac{185}{34049}a^{39}-\frac{148}{34049}a^{38}+\frac{11}{34049}a^{37}-\frac{9772}{34049}a^{36}-\frac{5146}{34049}a^{35}+\frac{14979}{34049}a^{34}+\frac{14962}{34049}a^{33}-\frac{12932}{34049}a^{32}-\frac{10790}{34049}a^{31}-\frac{6252}{34049}a^{30}-\frac{6323}{34049}a^{29}-\frac{15775}{34049}a^{28}+\frac{5202}{34049}a^{27}-\frac{5870}{34049}a^{26}+\frac{7233}{34049}a^{25}+\frac{11700}{34049}a^{24}+\frac{9288}{34049}a^{23}-\frac{11430}{34049}a^{22}+\frac{1982}{34049}a^{21}+\frac{8799}{34049}a^{20}-\frac{6985}{34049}a^{19}+\frac{2044}{34049}a^{18}-\frac{8695}{34049}a^{17}+\frac{133}{431}a^{16}-\frac{14858}{34049}a^{15}-\frac{2069}{34049}a^{14}+\frac{3717}{34049}a^{13}+\frac{13246}{34049}a^{12}+\frac{10806}{34049}a^{11}-\frac{5193}{34049}a^{10}-\frac{15090}{34049}a^{9}+\frac{864}{34049}a^{8}-\frac{12445}{34049}a^{7}-\frac{10787}{34049}a^{6}+\frac{14556}{34049}a^{5}+\frac{14352}{34049}a^{4}-\frac{3482}{34049}a^{3}+\frac{10916}{34049}a^{2}+\frac{16179}{34049}a-\frac{212}{431}$, $\frac{1}{24140741}a^{41}+\frac{74}{24140741}a^{40}+\frac{150855}{24140741}a^{39}+\frac{87123}{24140741}a^{38}-\frac{107106}{24140741}a^{37}+\frac{53088}{305579}a^{36}-\frac{10621108}{24140741}a^{35}+\frac{2097683}{24140741}a^{34}+\frac{3295716}{24140741}a^{33}-\frac{3761992}{24140741}a^{32}-\frac{6251070}{24140741}a^{31}-\frac{7828049}{24140741}a^{30}+\frac{5732657}{24140741}a^{29}-\frac{7611989}{24140741}a^{28}+\frac{11489018}{24140741}a^{27}-\frac{5033845}{24140741}a^{26}-\frac{1245006}{24140741}a^{25}-\frac{6741131}{24140741}a^{24}+\frac{4368807}{24140741}a^{23}-\frac{11124848}{24140741}a^{22}+\frac{4595309}{24140741}a^{21}+\frac{6335999}{24140741}a^{20}-\frac{7722372}{24140741}a^{19}-\frac{1877258}{24140741}a^{18}+\frac{4564589}{24140741}a^{17}+\frac{3184033}{24140741}a^{16}-\frac{10994492}{24140741}a^{15}-\frac{2993521}{24140741}a^{14}-\frac{10026157}{24140741}a^{13}-\frac{10745826}{24140741}a^{12}+\frac{846039}{24140741}a^{11}-\frac{7658699}{24140741}a^{10}-\frac{7581164}{24140741}a^{9}-\frac{6920735}{24140741}a^{8}+\frac{10231537}{24140741}a^{7}-\frac{3378668}{24140741}a^{6}+\frac{1411757}{24140741}a^{5}+\frac{2479413}{24140741}a^{4}+\frac{5820691}{24140741}a^{3}-\frac{2336354}{24140741}a^{2}-\frac{1816927}{24140741}a-\frac{63530}{305579}$, $\frac{1}{15\!\cdots\!89}a^{42}+\frac{295452920}{15\!\cdots\!89}a^{41}+\frac{160035561696}{15\!\cdots\!89}a^{40}-\frac{6699529655516}{15\!\cdots\!89}a^{39}-\frac{13102175018345}{15\!\cdots\!89}a^{38}-\frac{65669465207160}{15\!\cdots\!89}a^{37}-\frac{53\!\cdots\!64}{15\!\cdots\!89}a^{36}-\frac{51\!\cdots\!72}{15\!\cdots\!89}a^{35}+\frac{70\!\cdots\!38}{15\!\cdots\!89}a^{34}-\frac{33\!\cdots\!40}{15\!\cdots\!89}a^{33}+\frac{71\!\cdots\!47}{15\!\cdots\!89}a^{32}+\frac{32\!\cdots\!18}{15\!\cdots\!89}a^{31}-\frac{984508542249974}{15\!\cdots\!89}a^{30}-\frac{57\!\cdots\!22}{15\!\cdots\!89}a^{29}-\frac{67\!\cdots\!35}{15\!\cdots\!89}a^{28}+\frac{41\!\cdots\!46}{15\!\cdots\!89}a^{27}-\frac{44\!\cdots\!81}{15\!\cdots\!89}a^{26}-\frac{46\!\cdots\!89}{15\!\cdots\!89}a^{25}-\frac{71\!\cdots\!73}{15\!\cdots\!89}a^{24}-\frac{34\!\cdots\!47}{15\!\cdots\!89}a^{23}-\frac{474499744952191}{15\!\cdots\!89}a^{22}+\frac{353858735782790}{15\!\cdots\!89}a^{21}-\frac{67\!\cdots\!96}{15\!\cdots\!89}a^{20}-\frac{61\!\cdots\!83}{15\!\cdots\!89}a^{19}+\frac{15\!\cdots\!15}{15\!\cdots\!89}a^{18}-\frac{250745454116064}{15\!\cdots\!89}a^{17}-\frac{59\!\cdots\!99}{15\!\cdots\!89}a^{16}+\frac{42\!\cdots\!81}{15\!\cdots\!89}a^{15}+\frac{49\!\cdots\!76}{15\!\cdots\!89}a^{14}+\frac{49\!\cdots\!59}{15\!\cdots\!89}a^{13}-\frac{39\!\cdots\!54}{15\!\cdots\!89}a^{12}-\frac{17\!\cdots\!22}{15\!\cdots\!89}a^{11}-\frac{34\!\cdots\!10}{15\!\cdots\!89}a^{10}-\frac{12\!\cdots\!81}{15\!\cdots\!89}a^{9}+\frac{77\!\cdots\!95}{15\!\cdots\!89}a^{8}-\frac{60\!\cdots\!95}{15\!\cdots\!89}a^{7}+\frac{24\!\cdots\!03}{15\!\cdots\!89}a^{6}+\frac{19\!\cdots\!46}{15\!\cdots\!89}a^{5}-\frac{59\!\cdots\!71}{15\!\cdots\!89}a^{4}+\frac{23\!\cdots\!82}{15\!\cdots\!89}a^{3}+\frac{69\!\cdots\!64}{15\!\cdots\!89}a^{2}-\frac{869837932516423}{15\!\cdots\!89}a+\frac{21966161071867}{197273010586591}$, $\frac{1}{37\!\cdots\!39}a^{43}-\frac{39\!\cdots\!30}{37\!\cdots\!39}a^{42}-\frac{49\!\cdots\!49}{37\!\cdots\!39}a^{41}-\frac{21\!\cdots\!92}{37\!\cdots\!39}a^{40}+\frac{23\!\cdots\!18}{37\!\cdots\!39}a^{39}-\frac{19\!\cdots\!75}{37\!\cdots\!39}a^{38}-\frac{56\!\cdots\!96}{37\!\cdots\!39}a^{37}+\frac{13\!\cdots\!65}{37\!\cdots\!39}a^{36}-\frac{27\!\cdots\!10}{37\!\cdots\!39}a^{35}+\frac{17\!\cdots\!82}{37\!\cdots\!39}a^{34}+\frac{12\!\cdots\!95}{37\!\cdots\!39}a^{33}-\frac{53\!\cdots\!64}{37\!\cdots\!39}a^{32}-\frac{34\!\cdots\!31}{37\!\cdots\!39}a^{31}+\frac{50\!\cdots\!60}{37\!\cdots\!39}a^{30}-\frac{13\!\cdots\!81}{37\!\cdots\!39}a^{29}-\frac{18\!\cdots\!39}{37\!\cdots\!39}a^{28}+\frac{45\!\cdots\!99}{37\!\cdots\!39}a^{27}+\frac{11\!\cdots\!92}{37\!\cdots\!39}a^{26}+\frac{12\!\cdots\!77}{37\!\cdots\!39}a^{25}+\frac{61\!\cdots\!82}{37\!\cdots\!39}a^{24}+\frac{89\!\cdots\!02}{37\!\cdots\!39}a^{23}+\frac{15\!\cdots\!71}{37\!\cdots\!39}a^{22}-\frac{16\!\cdots\!16}{37\!\cdots\!39}a^{21}-\frac{16\!\cdots\!03}{37\!\cdots\!39}a^{20}+\frac{42\!\cdots\!76}{37\!\cdots\!39}a^{19}+\frac{30\!\cdots\!44}{37\!\cdots\!39}a^{18}-\frac{13\!\cdots\!16}{37\!\cdots\!39}a^{17}+\frac{16\!\cdots\!15}{37\!\cdots\!39}a^{16}+\frac{16\!\cdots\!56}{37\!\cdots\!39}a^{15}-\frac{10\!\cdots\!26}{37\!\cdots\!39}a^{14}-\frac{14\!\cdots\!40}{37\!\cdots\!39}a^{13}+\frac{66\!\cdots\!96}{37\!\cdots\!39}a^{12}-\frac{54\!\cdots\!15}{37\!\cdots\!39}a^{11}+\frac{17\!\cdots\!68}{37\!\cdots\!39}a^{10}-\frac{36\!\cdots\!23}{37\!\cdots\!39}a^{9}+\frac{10\!\cdots\!21}{37\!\cdots\!39}a^{8}+\frac{36\!\cdots\!65}{37\!\cdots\!39}a^{7}-\frac{46\!\cdots\!15}{37\!\cdots\!39}a^{6}-\frac{15\!\cdots\!57}{37\!\cdots\!39}a^{5}-\frac{15\!\cdots\!51}{37\!\cdots\!39}a^{4}-\frac{16\!\cdots\!00}{37\!\cdots\!39}a^{3}-\frac{28\!\cdots\!95}{37\!\cdots\!39}a^{2}-\frac{14\!\cdots\!63}{37\!\cdots\!39}a-\frac{79\!\cdots\!78}{47\!\cdots\!41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 5*x^42 + 233*x^41 - 43*x^40 - 317*x^39 + 21354*x^38 - 8471*x^37 - 151376*x^36 + 1217682*x^35 - 403318*x^34 - 13423140*x^33 + 39424468*x^32 + 11309151*x^31 - 468010089*x^30 + 2106045295*x^29 + 4999168352*x^28 - 15496523572*x^27 + 27333197279*x^26 + 146391454839*x^25 - 312880692651*x^24 - 497479186023*x^23 + 3337233114050*x^22 - 5154686504208*x^21 - 9975661659479*x^20 + 39190922446136*x^19 + 57957376494193*x^18 - 161104990158775*x^17 + 196673793129365*x^16 - 626752756885128*x^15 + 1216721201591554*x^14 - 929884305980460*x^13 + 2927299441177083*x^12 - 5827697965195326*x^11 + 3936747024923923*x^10 + 3885081410749703*x^9 + 2351827428652833*x^8 - 13196939560476147*x^7 - 3069516740265001*x^6 + 14364461602517046*x^5 + 9918438847528303*x^4 + 3219150416916658*x^3 + 17304522003647720*x^2 + 4819100819162179*x + 10922358066448429)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 - x^43 + 5*x^42 + 233*x^41 - 43*x^40 - 317*x^39 + 21354*x^38 - 8471*x^37 - 151376*x^36 + 1217682*x^35 - 403318*x^34 - 13423140*x^33 + 39424468*x^32 + 11309151*x^31 - 468010089*x^30 + 2106045295*x^29 + 4999168352*x^28 - 15496523572*x^27 + 27333197279*x^26 + 146391454839*x^25 - 312880692651*x^24 - 497479186023*x^23 + 3337233114050*x^22 - 5154686504208*x^21 - 9975661659479*x^20 + 39190922446136*x^19 + 57957376494193*x^18 - 161104990158775*x^17 + 196673793129365*x^16 - 626752756885128*x^15 + 1216721201591554*x^14 - 929884305980460*x^13 + 2927299441177083*x^12 - 5827697965195326*x^11 + 3936747024923923*x^10 + 3885081410749703*x^9 + 2351827428652833*x^8 - 13196939560476147*x^7 - 3069516740265001*x^6 + 14364461602517046*x^5 + 9918438847528303*x^4 + 3219150416916658*x^3 + 17304522003647720*x^2 + 4819100819162179*x + 10922358066448429, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 - x^43 + 5*x^42 + 233*x^41 - 43*x^40 - 317*x^39 + 21354*x^38 - 8471*x^37 - 151376*x^36 + 1217682*x^35 - 403318*x^34 - 13423140*x^33 + 39424468*x^32 + 11309151*x^31 - 468010089*x^30 + 2106045295*x^29 + 4999168352*x^28 - 15496523572*x^27 + 27333197279*x^26 + 146391454839*x^25 - 312880692651*x^24 - 497479186023*x^23 + 3337233114050*x^22 - 5154686504208*x^21 - 9975661659479*x^20 + 39190922446136*x^19 + 57957376494193*x^18 - 161104990158775*x^17 + 196673793129365*x^16 - 626752756885128*x^15 + 1216721201591554*x^14 - 929884305980460*x^13 + 2927299441177083*x^12 - 5827697965195326*x^11 + 3936747024923923*x^10 + 3885081410749703*x^9 + 2351827428652833*x^8 - 13196939560476147*x^7 - 3069516740265001*x^6 + 14364461602517046*x^5 + 9918438847528303*x^4 + 3219150416916658*x^3 + 17304522003647720*x^2 + 4819100819162179*x + 10922358066448429);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 + 5*x^42 + 233*x^41 - 43*x^40 - 317*x^39 + 21354*x^38 - 8471*x^37 - 151376*x^36 + 1217682*x^35 - 403318*x^34 - 13423140*x^33 + 39424468*x^32 + 11309151*x^31 - 468010089*x^30 + 2106045295*x^29 + 4999168352*x^28 - 15496523572*x^27 + 27333197279*x^26 + 146391454839*x^25 - 312880692651*x^24 - 497479186023*x^23 + 3337233114050*x^22 - 5154686504208*x^21 - 9975661659479*x^20 + 39190922446136*x^19 + 57957376494193*x^18 - 161104990158775*x^17 + 196673793129365*x^16 - 626752756885128*x^15 + 1216721201591554*x^14 - 929884305980460*x^13 + 2927299441177083*x^12 - 5827697965195326*x^11 + 3936747024923923*x^10 + 3885081410749703*x^9 + 2351827428652833*x^8 - 13196939560476147*x^7 - 3069516740265001*x^6 + 14364461602517046*x^5 + 9918438847528303*x^4 + 3219150416916658*x^3 + 17304522003647720*x^2 + 4819100819162179*x + 10922358066448429);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{44}$ (as 44T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 44
The 44 conjugacy class representatives for $C_{44}$
Character table for $C_{44}$ is not computed

Intermediate fields

\(\Q(\sqrt{397}) \), 4.0.62570773.1, 11.11.97253461433805715000527049.1, 22.22.3754919597060124016902809789203115664418428068917415197.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $44$ $22^{2}$ $44$ $44$ ${\href{/padicField/11.11.0.1}{11} }^{4}$ $44$ $44$ ${\href{/padicField/19.11.0.1}{11} }^{4}$ $22^{2}$ ${\href{/padicField/29.11.0.1}{11} }^{4}$ ${\href{/padicField/31.11.0.1}{11} }^{4}$ ${\href{/padicField/37.11.0.1}{11} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{11}$ $22^{2}$ ${\href{/padicField/47.11.0.1}{11} }^{4}$ $44$ $44$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(397\) Copy content Toggle raw display Deg $44$$44$$1$$43$