Properties

Label 44.0.491...016.1
Degree $44$
Signature $[0, 22]$
Discriminant $4.918\times 10^{103}$
Root discriminant \(227.32\)
Ramified primes $2,89$
Class number not computed
Class group not computed
Galois group $C_{44}$ (as 44T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 + 178*x^42 + 14240*x^40 + 678536*x^38 + 21520912*x^36 + 481058528*x^34 + 7829898176*x^32 + 94579676288*x^30 + 856670243328*x^28 + 5842319622656*x^26 + 29972558878720*x^24 + 115057842620416*x^22 + 327334436167680*x^20 + 680528102817792*x^18 + 1014277563383808*x^16 + 1055898724237312*x^14 + 739984902586368*x^12 + 330371237150720*x^10 + 86337597734912*x^8 + 11778002518016*x^6 + 830390403072*x^4 + 28556918784*x^2 + 373293056)
 
gp: K = bnfinit(y^44 + 178*y^42 + 14240*y^40 + 678536*y^38 + 21520912*y^36 + 481058528*y^34 + 7829898176*y^32 + 94579676288*y^30 + 856670243328*y^28 + 5842319622656*y^26 + 29972558878720*y^24 + 115057842620416*y^22 + 327334436167680*y^20 + 680528102817792*y^18 + 1014277563383808*y^16 + 1055898724237312*y^14 + 739984902586368*y^12 + 330371237150720*y^10 + 86337597734912*y^8 + 11778002518016*y^6 + 830390403072*y^4 + 28556918784*y^2 + 373293056, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 + 178*x^42 + 14240*x^40 + 678536*x^38 + 21520912*x^36 + 481058528*x^34 + 7829898176*x^32 + 94579676288*x^30 + 856670243328*x^28 + 5842319622656*x^26 + 29972558878720*x^24 + 115057842620416*x^22 + 327334436167680*x^20 + 680528102817792*x^18 + 1014277563383808*x^16 + 1055898724237312*x^14 + 739984902586368*x^12 + 330371237150720*x^10 + 86337597734912*x^8 + 11778002518016*x^6 + 830390403072*x^4 + 28556918784*x^2 + 373293056);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 178*x^42 + 14240*x^40 + 678536*x^38 + 21520912*x^36 + 481058528*x^34 + 7829898176*x^32 + 94579676288*x^30 + 856670243328*x^28 + 5842319622656*x^26 + 29972558878720*x^24 + 115057842620416*x^22 + 327334436167680*x^20 + 680528102817792*x^18 + 1014277563383808*x^16 + 1055898724237312*x^14 + 739984902586368*x^12 + 330371237150720*x^10 + 86337597734912*x^8 + 11778002518016*x^6 + 830390403072*x^4 + 28556918784*x^2 + 373293056)
 

\( x^{44} + 178 x^{42} + 14240 x^{40} + 678536 x^{38} + 21520912 x^{36} + 481058528 x^{34} + \cdots + 373293056 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(491\!\cdots\!016\) \(\medspace = 2^{66}\cdot 89^{43}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(227.32\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}89^{43/44}\approx 227.31635408801262$
Ramified primes:   \(2\), \(89\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{89}) \)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(712=2^{3}\cdot 89\)
Dirichlet character group:    $\lbrace$$\chi_{712}(1,·)$, $\chi_{712}(643,·)$, $\chi_{712}(265,·)$, $\chi_{712}(435,·)$, $\chi_{712}(401,·)$, $\chi_{712}(403,·)$, $\chi_{712}(601,·)$, $\chi_{712}(25,·)$, $\chi_{712}(539,·)$, $\chi_{712}(545,·)$, $\chi_{712}(411,·)$, $\chi_{712}(555,·)$, $\chi_{712}(427,·)$, $\chi_{712}(307,·)$, $\chi_{712}(99,·)$, $\chi_{712}(177,·)$, $\chi_{712}(691,·)$, $\chi_{712}(57,·)$, $\chi_{712}(187,·)$, $\chi_{712}(449,·)$, $\chi_{712}(603,·)$, $\chi_{712}(195,·)$, $\chi_{712}(673,·)$, $\chi_{712}(73,·)$, $\chi_{712}(587,·)$, $\chi_{712}(81,·)$, $\chi_{712}(339,·)$, $\chi_{712}(441,·)$, $\chi_{712}(345,·)$, $\chi_{712}(347,·)$, $\chi_{712}(97,·)$, $\chi_{712}(227,·)$, $\chi_{712}(131,·)$, $\chi_{712}(105,·)$, $\chi_{712}(107,·)$, $\chi_{712}(289,·)$, $\chi_{712}(625,·)$, $\chi_{712}(659,·)$, $\chi_{712}(707,·)$, $\chi_{712}(489,·)$, $\chi_{712}(153,·)$, $\chi_{712}(121,·)$, $\chi_{712}(217,·)$, $\chi_{712}(123,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{4}a^{5}$, $\frac{1}{8}a^{6}$, $\frac{1}{8}a^{7}$, $\frac{1}{16}a^{8}$, $\frac{1}{16}a^{9}$, $\frac{1}{32}a^{10}$, $\frac{1}{32}a^{11}$, $\frac{1}{64}a^{12}$, $\frac{1}{64}a^{13}$, $\frac{1}{128}a^{14}$, $\frac{1}{128}a^{15}$, $\frac{1}{256}a^{16}$, $\frac{1}{256}a^{17}$, $\frac{1}{512}a^{18}$, $\frac{1}{512}a^{19}$, $\frac{1}{1024}a^{20}$, $\frac{1}{1024}a^{21}$, $\frac{1}{2048}a^{22}$, $\frac{1}{2048}a^{23}$, $\frac{1}{4096}a^{24}$, $\frac{1}{4096}a^{25}$, $\frac{1}{8192}a^{26}$, $\frac{1}{8192}a^{27}$, $\frac{1}{16384}a^{28}$, $\frac{1}{16384}a^{29}$, $\frac{1}{32768}a^{30}$, $\frac{1}{32768}a^{31}$, $\frac{1}{65536}a^{32}$, $\frac{1}{65536}a^{33}$, $\frac{1}{131072}a^{34}$, $\frac{1}{131072}a^{35}$, $\frac{1}{46923776}a^{36}+\frac{25}{23461888}a^{34}-\frac{29}{11730944}a^{32}+\frac{33}{5865472}a^{30}-\frac{5}{733184}a^{28}-\frac{1}{1466368}a^{26}+\frac{1}{183296}a^{24}+\frac{29}{183296}a^{22}+\frac{31}{91648}a^{20}-\frac{51}{91648}a^{18}-\frac{3}{45824}a^{16}+\frac{21}{11456}a^{14}-\frac{1}{5728}a^{12}-\frac{11}{5728}a^{10}-\frac{3}{716}a^{8}-\frac{3}{179}a^{6}+\frac{9}{358}a^{4}+\frac{77}{358}a^{2}+\frac{85}{179}$, $\frac{1}{46923776}a^{37}+\frac{25}{23461888}a^{35}-\frac{29}{11730944}a^{33}+\frac{33}{5865472}a^{31}-\frac{5}{733184}a^{29}-\frac{1}{1466368}a^{27}+\frac{1}{183296}a^{25}+\frac{29}{183296}a^{23}+\frac{31}{91648}a^{21}-\frac{51}{91648}a^{19}-\frac{3}{45824}a^{17}+\frac{21}{11456}a^{15}-\frac{1}{5728}a^{13}-\frac{11}{5728}a^{11}-\frac{3}{716}a^{9}-\frac{3}{179}a^{7}+\frac{9}{358}a^{5}+\frac{77}{358}a^{3}+\frac{85}{179}a$, $\frac{1}{93847552}a^{38}+\frac{31}{11730944}a^{34}+\frac{21}{5865472}a^{32}+\frac{25}{2932736}a^{30}-\frac{19}{1466368}a^{28}+\frac{29}{1466368}a^{26}-\frac{21}{366592}a^{24}+\frac{11}{91648}a^{22}+\frac{5}{91648}a^{20}+\frac{19}{91648}a^{18}-\frac{31}{22912}a^{16}+\frac{11}{11456}a^{14}+\frac{39}{11456}a^{12}+\frac{21}{1432}a^{10}-\frac{41}{1432}a^{8}+\frac{81}{1432}a^{6}-\frac{15}{716}a^{4}-\frac{25}{179}a^{2}+\frac{23}{179}$, $\frac{1}{93847552}a^{39}+\frac{31}{11730944}a^{35}+\frac{21}{5865472}a^{33}+\frac{25}{2932736}a^{31}-\frac{19}{1466368}a^{29}+\frac{29}{1466368}a^{27}-\frac{21}{366592}a^{25}+\frac{11}{91648}a^{23}+\frac{5}{91648}a^{21}+\frac{19}{91648}a^{19}-\frac{31}{22912}a^{17}+\frac{11}{11456}a^{15}+\frac{39}{11456}a^{13}+\frac{21}{1432}a^{11}-\frac{41}{1432}a^{9}+\frac{81}{1432}a^{7}-\frac{15}{716}a^{5}-\frac{25}{179}a^{3}+\frac{23}{179}a$, $\frac{1}{89905954816}a^{40}-\frac{25}{22476488704}a^{38}+\frac{233}{22476488704}a^{36}-\frac{22411}{11238244352}a^{34}+\frac{21273}{5619122176}a^{32}+\frac{5833}{702390272}a^{30}+\frac{14917}{702390272}a^{28}-\frac{10229}{351195136}a^{26}-\frac{2063}{43899392}a^{24}-\frac{2185}{43899392}a^{22}+\frac{15849}{87798784}a^{20}-\frac{14387}{43899392}a^{18}+\frac{21941}{21949696}a^{16}+\frac{2255}{5487424}a^{14}-\frac{19183}{2743712}a^{12}-\frac{20713}{1371856}a^{10}+\frac{12153}{1371856}a^{8}+\frac{21545}{685928}a^{6}-\frac{19671}{342964}a^{4}-\frac{17215}{85741}a^{2}-\frac{30649}{85741}$, $\frac{1}{89905954816}a^{41}-\frac{25}{22476488704}a^{39}+\frac{233}{22476488704}a^{37}-\frac{22411}{11238244352}a^{35}+\frac{21273}{5619122176}a^{33}+\frac{5833}{702390272}a^{31}+\frac{14917}{702390272}a^{29}-\frac{10229}{351195136}a^{27}-\frac{2063}{43899392}a^{25}-\frac{2185}{43899392}a^{23}+\frac{15849}{87798784}a^{21}-\frac{14387}{43899392}a^{19}+\frac{21941}{21949696}a^{17}+\frac{2255}{5487424}a^{15}-\frac{19183}{2743712}a^{13}-\frac{20713}{1371856}a^{11}+\frac{12153}{1371856}a^{9}+\frac{21545}{685928}a^{7}-\frac{19671}{342964}a^{5}-\frac{17215}{85741}a^{3}-\frac{30649}{85741}a$, $\frac{1}{37\!\cdots\!04}a^{42}-\frac{38\!\cdots\!87}{92\!\cdots\!76}a^{40}+\frac{27\!\cdots\!63}{23\!\cdots\!44}a^{38}+\frac{42\!\cdots\!83}{46\!\cdots\!88}a^{36}-\frac{36\!\cdots\!89}{29\!\cdots\!68}a^{34}+\frac{84\!\cdots\!41}{11\!\cdots\!72}a^{32}-\frac{35\!\cdots\!81}{29\!\cdots\!68}a^{30}+\frac{61\!\cdots\!19}{29\!\cdots\!68}a^{28}+\frac{58\!\cdots\!73}{72\!\cdots\!92}a^{26}-\frac{14\!\cdots\!49}{18\!\cdots\!48}a^{24}-\frac{42\!\cdots\!57}{18\!\cdots\!48}a^{22}-\frac{11\!\cdots\!45}{45\!\cdots\!12}a^{20}-\frac{20\!\cdots\!91}{90\!\cdots\!24}a^{18}-\frac{20\!\cdots\!79}{22\!\cdots\!56}a^{16}-\frac{87\!\cdots\!97}{22\!\cdots\!56}a^{14}+\frac{60\!\cdots\!15}{11\!\cdots\!28}a^{12}-\frac{12\!\cdots\!91}{14\!\cdots\!16}a^{10}-\frac{10\!\cdots\!65}{17\!\cdots\!27}a^{8}+\frac{10\!\cdots\!07}{17\!\cdots\!27}a^{6}+\frac{39\!\cdots\!91}{70\!\cdots\!08}a^{4}+\frac{75\!\cdots\!13}{35\!\cdots\!54}a^{2}-\frac{82\!\cdots\!57}{17\!\cdots\!27}$, $\frac{1}{37\!\cdots\!04}a^{43}-\frac{38\!\cdots\!87}{92\!\cdots\!76}a^{41}+\frac{27\!\cdots\!63}{23\!\cdots\!44}a^{39}+\frac{42\!\cdots\!83}{46\!\cdots\!88}a^{37}-\frac{36\!\cdots\!89}{29\!\cdots\!68}a^{35}+\frac{84\!\cdots\!41}{11\!\cdots\!72}a^{33}-\frac{35\!\cdots\!81}{29\!\cdots\!68}a^{31}+\frac{61\!\cdots\!19}{29\!\cdots\!68}a^{29}+\frac{58\!\cdots\!73}{72\!\cdots\!92}a^{27}-\frac{14\!\cdots\!49}{18\!\cdots\!48}a^{25}-\frac{42\!\cdots\!57}{18\!\cdots\!48}a^{23}-\frac{11\!\cdots\!45}{45\!\cdots\!12}a^{21}-\frac{20\!\cdots\!91}{90\!\cdots\!24}a^{19}-\frac{20\!\cdots\!79}{22\!\cdots\!56}a^{17}-\frac{87\!\cdots\!97}{22\!\cdots\!56}a^{15}+\frac{60\!\cdots\!15}{11\!\cdots\!28}a^{13}-\frac{12\!\cdots\!91}{14\!\cdots\!16}a^{11}-\frac{10\!\cdots\!65}{17\!\cdots\!27}a^{9}+\frac{10\!\cdots\!07}{17\!\cdots\!27}a^{7}+\frac{39\!\cdots\!91}{70\!\cdots\!08}a^{5}+\frac{75\!\cdots\!13}{35\!\cdots\!54}a^{3}-\frac{82\!\cdots\!57}{17\!\cdots\!27}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 + 178*x^42 + 14240*x^40 + 678536*x^38 + 21520912*x^36 + 481058528*x^34 + 7829898176*x^32 + 94579676288*x^30 + 856670243328*x^28 + 5842319622656*x^26 + 29972558878720*x^24 + 115057842620416*x^22 + 327334436167680*x^20 + 680528102817792*x^18 + 1014277563383808*x^16 + 1055898724237312*x^14 + 739984902586368*x^12 + 330371237150720*x^10 + 86337597734912*x^8 + 11778002518016*x^6 + 830390403072*x^4 + 28556918784*x^2 + 373293056)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 + 178*x^42 + 14240*x^40 + 678536*x^38 + 21520912*x^36 + 481058528*x^34 + 7829898176*x^32 + 94579676288*x^30 + 856670243328*x^28 + 5842319622656*x^26 + 29972558878720*x^24 + 115057842620416*x^22 + 327334436167680*x^20 + 680528102817792*x^18 + 1014277563383808*x^16 + 1055898724237312*x^14 + 739984902586368*x^12 + 330371237150720*x^10 + 86337597734912*x^8 + 11778002518016*x^6 + 830390403072*x^4 + 28556918784*x^2 + 373293056, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 + 178*x^42 + 14240*x^40 + 678536*x^38 + 21520912*x^36 + 481058528*x^34 + 7829898176*x^32 + 94579676288*x^30 + 856670243328*x^28 + 5842319622656*x^26 + 29972558878720*x^24 + 115057842620416*x^22 + 327334436167680*x^20 + 680528102817792*x^18 + 1014277563383808*x^16 + 1055898724237312*x^14 + 739984902586368*x^12 + 330371237150720*x^10 + 86337597734912*x^8 + 11778002518016*x^6 + 830390403072*x^4 + 28556918784*x^2 + 373293056);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 178*x^42 + 14240*x^40 + 678536*x^38 + 21520912*x^36 + 481058528*x^34 + 7829898176*x^32 + 94579676288*x^30 + 856670243328*x^28 + 5842319622656*x^26 + 29972558878720*x^24 + 115057842620416*x^22 + 327334436167680*x^20 + 680528102817792*x^18 + 1014277563383808*x^16 + 1055898724237312*x^14 + 739984902586368*x^12 + 330371237150720*x^10 + 86337597734912*x^8 + 11778002518016*x^6 + 830390403072*x^4 + 28556918784*x^2 + 373293056);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{44}$ (as 44T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 44
The 44 conjugacy class representatives for $C_{44}$
Character table for $C_{44}$

Intermediate fields

\(\Q(\sqrt{89}) \), 4.0.45118016.1, 11.11.31181719929966183601.1, 22.22.86534669543385676516186776267386878120889.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $44$ ${\href{/padicField/5.11.0.1}{11} }^{4}$ $44$ ${\href{/padicField/11.11.0.1}{11} }^{4}$ $44$ $22^{2}$ $44$ $44$ $44$ $44$ ${\href{/padicField/37.4.0.1}{4} }^{11}$ $44$ $44$ ${\href{/padicField/47.11.0.1}{11} }^{4}$ ${\href{/padicField/53.11.0.1}{11} }^{4}$ $44$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $22$$2$$11$$33$
Deg $22$$2$$11$$33$
\(89\) Copy content Toggle raw display Deg $44$$44$$1$$43$