# Oscar code for working with number field 44.0.482179487665033966874817964307376476160282778171317425736173928285756467369658548224.1 # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to compile (this depends on the state of your Julia REPL), and/or to execute (this depends on the field). # Define the number field: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 44*x^42 + 901*x^40 + 11400*x^38 + 99790*x^36 + 641208*x^34 + 3131721*x^32 + 11878176*x^30 + 35442612*x^28 + 83778736*x^26 + 157236844*x^24 + 233880352*x^22 + 274130056*x^20 + 250699168*x^18 + 176290339*x^16 + 93382192*x^14 + 36217051*x^12 + 9883588*x^10 + 1792219*x^8 + 197912*x^6 + 11506*x^4 + 264*x^2 + 1) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 44*x^42 + 901*x^40 + 11400*x^38 + 99790*x^36 + 641208*x^34 + 3131721*x^32 + 11878176*x^30 + 35442612*x^28 + 83778736*x^26 + 157236844*x^24 + 233880352*x^22 + 274130056*x^20 + 250699168*x^18 + 176290339*x^16 + 93382192*x^14 + 36217051*x^12 + 9883588*x^10 + 1792219*x^8 + 197912*x^6 + 11506*x^4 + 264*x^2 + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]