Normalized defining polynomial
\( x^{44} + 44 x^{42} + 901 x^{40} + 11400 x^{38} + 99790 x^{36} + 641208 x^{34} + 3131721 x^{32} + 11878176 x^{30} + 35442612 x^{28} + 83778736 x^{26} + 157236844 x^{24} + \cdots + 1 \)
Invariants
Degree: | $44$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 22]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(482\!\cdots\!224\)
\(\medspace = 2^{88}\cdot 23^{42}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(79.78\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $44$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(184=2^{3}\cdot 23\) | ||
Dirichlet character group: | $\lbrace$$\chi_{184}(1,·)$, $\chi_{184}(3,·)$, $\chi_{184}(5,·)$, $\chi_{184}(7,·)$, $\chi_{184}(9,·)$, $\chi_{184}(139,·)$, $\chi_{184}(15,·)$, $\chi_{184}(131,·)$, $\chi_{184}(21,·)$, $\chi_{184}(25,·)$, $\chi_{184}(27,·)$, $\chi_{184}(157,·)$, $\chi_{184}(159,·)$, $\chi_{184}(35,·)$, $\chi_{184}(37,·)$, $\chi_{184}(177,·)$, $\chi_{184}(41,·)$, $\chi_{184}(135,·)$, $\chi_{184}(45,·)$, $\chi_{184}(175,·)$, $\chi_{184}(49,·)$, $\chi_{184}(179,·)$, $\chi_{184}(53,·)$, $\chi_{184}(183,·)$, $\chi_{184}(59,·)$, $\chi_{184}(61,·)$, $\chi_{184}(63,·)$, $\chi_{184}(181,·)$, $\chi_{184}(73,·)$, $\chi_{184}(75,·)$, $\chi_{184}(79,·)$, $\chi_{184}(81,·)$, $\chi_{184}(163,·)$, $\chi_{184}(143,·)$, $\chi_{184}(103,·)$, $\chi_{184}(105,·)$, $\chi_{184}(109,·)$, $\chi_{184}(111,·)$, $\chi_{184}(147,·)$, $\chi_{184}(169,·)$, $\chi_{184}(121,·)$, $\chi_{184}(123,·)$, $\chi_{184}(125,·)$, $\chi_{184}(149,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{2097152}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $
Galois group
$C_2\times C_{22}$ (as 44T2):
An abelian group of order 44 |
The 44 conjugacy class representatives for $C_2\times C_{22}$ |
Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/padicField/11.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | ${\href{/padicField/19.11.0.1}{11} }^{4}$ | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/padicField/41.11.0.1}{11} }^{4}$ | ${\href{/padicField/43.11.0.1}{11} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $44$ | $4$ | $11$ | $88$ | |||
\(23\)
| Deg $44$ | $22$ | $2$ | $42$ |