Normalized defining polynomial
\( x^{44} + 92 x^{42} + 3818 x^{40} + 94760 x^{38} + 1573384 x^{36} + 18537632 x^{34} + 160562632 x^{32} + 1046043680 x^{30} + 5205551360 x^{28} + 19993969920 x^{26} + 59657548672 x^{24} + 138711729664 x^{22} + 251281669632 x^{20} + 353362384896 x^{18} + 382830850432 x^{16} + 315651405312 x^{14} + 194509897472 x^{12} + 87272100864 x^{10} + 27460466176 x^{8} + 5732227072 x^{6} + 726956032 x^{4} + 47669248 x^{2} + 1083392 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{32} a^{20}$, $\frac{1}{32} a^{21}$, $\frac{1}{736} a^{22}$, $\frac{1}{736} a^{23}$, $\frac{1}{1472} a^{24}$, $\frac{1}{1472} a^{25}$, $\frac{1}{1472} a^{26}$, $\frac{1}{1472} a^{27}$, $\frac{1}{2944} a^{28}$, $\frac{1}{2944} a^{29}$, $\frac{1}{2944} a^{30}$, $\frac{1}{2944} a^{31}$, $\frac{1}{5888} a^{32}$, $\frac{1}{5888} a^{33}$, $\frac{1}{276736} a^{34} - \frac{19}{276736} a^{32} - \frac{1}{8648} a^{30} - \frac{3}{69184} a^{28} - \frac{11}{69184} a^{26} - \frac{11}{34592} a^{24} - \frac{1}{4324} a^{22} - \frac{1}{188} a^{20} - \frac{1}{47} a^{18} - \frac{11}{376} a^{16} + \frac{3}{188} a^{14} - \frac{1}{47} a^{12} + \frac{3}{47} a^{10} + \frac{1}{47} a^{8} - \frac{21}{94} a^{6} - \frac{3}{47} a^{4} - \frac{10}{47} a^{2} + \frac{2}{47}$, $\frac{1}{276736} a^{35} - \frac{19}{276736} a^{33} - \frac{1}{8648} a^{31} - \frac{3}{69184} a^{29} - \frac{11}{69184} a^{27} - \frac{11}{34592} a^{25} - \frac{1}{4324} a^{23} - \frac{1}{188} a^{21} - \frac{1}{47} a^{19} - \frac{11}{376} a^{17} + \frac{3}{188} a^{15} - \frac{1}{47} a^{13} + \frac{3}{47} a^{11} + \frac{1}{47} a^{9} - \frac{21}{94} a^{7} - \frac{3}{47} a^{5} - \frac{10}{47} a^{3} + \frac{2}{47} a$, $\frac{1}{553472} a^{36} + \frac{15}{276736} a^{32} - \frac{7}{69184} a^{30} - \frac{21}{138368} a^{28} + \frac{1}{34592} a^{26} + \frac{9}{34592} a^{24} + \frac{5}{8648} a^{22} + \frac{1}{752} a^{20} - \frac{11}{376} a^{18} - \frac{15}{752} a^{16} + \frac{3}{188} a^{14} - \frac{17}{376} a^{12} + \frac{11}{94} a^{10} + \frac{17}{188} a^{8} + \frac{9}{94} a^{6} - \frac{10}{47} a^{4} + \frac{19}{47}$, $\frac{1}{553472} a^{37} + \frac{15}{276736} a^{33} - \frac{7}{69184} a^{31} - \frac{21}{138368} a^{29} + \frac{1}{34592} a^{27} + \frac{9}{34592} a^{25} + \frac{5}{8648} a^{23} + \frac{1}{752} a^{21} - \frac{11}{376} a^{19} - \frac{15}{752} a^{17} + \frac{3}{188} a^{15} - \frac{17}{376} a^{13} + \frac{11}{94} a^{11} + \frac{17}{188} a^{9} + \frac{9}{94} a^{7} - \frac{10}{47} a^{5} + \frac{19}{47} a$, $\frac{1}{553472} a^{38} + \frac{11}{138368} a^{32} - \frac{1}{8648} a^{30} - \frac{5}{69184} a^{26} - \frac{3}{34592} a^{24} - \frac{11}{17296} a^{22} - \frac{9}{752} a^{20} - \frac{5}{376} a^{18} + \frac{13}{752} a^{16} - \frac{13}{376} a^{14} + \frac{23}{376} a^{12} - \frac{11}{94} a^{10} + \frac{5}{188} a^{8} + \frac{13}{94} a^{6} - \frac{2}{47} a^{4} - \frac{19}{47} a^{2} + \frac{17}{47}$, $\frac{1}{553472} a^{39} + \frac{11}{138368} a^{33} - \frac{1}{8648} a^{31} - \frac{5}{69184} a^{27} - \frac{3}{34592} a^{25} - \frac{11}{17296} a^{23} - \frac{9}{752} a^{21} - \frac{5}{376} a^{19} + \frac{13}{752} a^{17} - \frac{13}{376} a^{15} + \frac{23}{376} a^{13} - \frac{11}{94} a^{11} + \frac{5}{188} a^{9} + \frac{13}{94} a^{7} - \frac{2}{47} a^{5} - \frac{19}{47} a^{3} + \frac{17}{47} a$, $\frac{1}{1106944} a^{40} + \frac{5}{276736} a^{32} - \frac{3}{34592} a^{30} + \frac{7}{69184} a^{28} - \frac{1}{3008} a^{26} - \frac{15}{69184} a^{24} + \frac{11}{17296} a^{22} - \frac{1}{94} a^{20} + \frac{9}{376} a^{18} - \frac{3}{376} a^{16} + \frac{2}{47} a^{14} + \frac{19}{376} a^{12} - \frac{3}{47} a^{10} + \frac{4}{47} a^{8} - \frac{3}{47} a^{6} + \frac{1}{47} a^{2} - \frac{22}{47}$, $\frac{1}{1106944} a^{41} + \frac{5}{276736} a^{33} - \frac{3}{34592} a^{31} + \frac{7}{69184} a^{29} - \frac{1}{3008} a^{27} - \frac{15}{69184} a^{25} + \frac{11}{17296} a^{23} - \frac{1}{94} a^{21} + \frac{9}{376} a^{19} - \frac{3}{376} a^{17} + \frac{2}{47} a^{15} + \frac{19}{376} a^{13} - \frac{3}{47} a^{11} + \frac{4}{47} a^{9} - \frac{3}{47} a^{7} + \frac{1}{47} a^{3} - \frac{22}{47} a$, $\frac{1}{140083591983670655035080260608} a^{42} + \frac{2256509863799051756369}{6090590955811767610220880896} a^{40} + \frac{2583061964807034038971}{3045295477905883805110440448} a^{38} + \frac{1113260565432830064567}{3045295477905883805110440448} a^{36} - \frac{1447420254003493684027}{1522647738952941902555220224} a^{34} + \frac{25084101878312392539697}{761323869476470951277610112} a^{32} + \frac{47609048433290713788911}{761323869476470951277610112} a^{30} - \frac{76874360248395014426301}{761323869476470951277610112} a^{28} + \frac{30284139663092613672881}{190330967369117737819402528} a^{26} + \frac{4424858096404237967827}{16550518901662411984295872} a^{24} + \frac{4942645013554099176011}{95165483684558868909701264} a^{22} + \frac{139593334965327955092689}{11895685460569858613712658} a^{20} + \frac{526428717228504804087}{517203715676950374509246} a^{18} + \frac{83128699930830570215869}{4137629725415602996073968} a^{16} - \frac{36813317736444162207351}{2068814862707801498036984} a^{14} + \frac{21427888565751798835753}{2068814862707801498036984} a^{12} - \frac{102115646731223828890349}{1034407431353900749018492} a^{10} + \frac{98150372661380921959625}{1034407431353900749018492} a^{8} - \frac{29683296328364497987272}{258601857838475187254623} a^{6} - \frac{46636082839915853335175}{258601857838475187254623} a^{4} + \frac{57343739862383229677412}{258601857838475187254623} a^{2} - \frac{72049589838778838186310}{258601857838475187254623}$, $\frac{1}{140083591983670655035080260608} a^{43} + \frac{2256509863799051756369}{6090590955811767610220880896} a^{41} + \frac{2583061964807034038971}{3045295477905883805110440448} a^{39} + \frac{1113260565432830064567}{3045295477905883805110440448} a^{37} - \frac{1447420254003493684027}{1522647738952941902555220224} a^{35} + \frac{25084101878312392539697}{761323869476470951277610112} a^{33} + \frac{47609048433290713788911}{761323869476470951277610112} a^{31} - \frac{76874360248395014426301}{761323869476470951277610112} a^{29} + \frac{30284139663092613672881}{190330967369117737819402528} a^{27} + \frac{4424858096404237967827}{16550518901662411984295872} a^{25} + \frac{4942645013554099176011}{95165483684558868909701264} a^{23} + \frac{139593334965327955092689}{11895685460569858613712658} a^{21} + \frac{526428717228504804087}{517203715676950374509246} a^{19} + \frac{83128699930830570215869}{4137629725415602996073968} a^{17} - \frac{36813317736444162207351}{2068814862707801498036984} a^{15} + \frac{21427888565751798835753}{2068814862707801498036984} a^{13} - \frac{102115646731223828890349}{1034407431353900749018492} a^{11} + \frac{98150372661380921959625}{1034407431353900749018492} a^{9} - \frac{29683296328364497987272}{258601857838475187254623} a^{7} - \frac{46636082839915853335175}{258601857838475187254623} a^{5} + \frac{57343739862383229677412}{258601857838475187254623} a^{3} - \frac{72049589838778838186310}{258601857838475187254623} a$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 44 |
| The 44 conjugacy class representatives for $C_{44}$ |
| Character table for $C_{44}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.1083392.5, \(\Q(\zeta_{23})^+\), 22.22.14741666340843480753092741810452692992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $44$ | $44$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{4}$ | $44$ | $44$ | $22^{2}$ | $44$ | R | $44$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{4}$ | $44$ | $22^{2}$ | $44$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{44}$ | $44$ | $44$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 23 | Data not computed | ||||||